132 research outputs found

    Implications of Cannabis Use and Heavy Alcohol Use on HIV Drug Risk Behaviors in Russian Heroin Users

    Get PDF
    Cannabis and heavy alcohol use potentially increase HIV transmission by increasing risky drug behaviors. We studied 404 subjects entering treatment for heroin dependence, in St. Petersburg, Russia. We used the HIV Risk Assessment Battery (RAB) drug subscale to measure risky drug behavior. Although all heavy alcohol users had risky drug behaviors, their drug RAB scores did not differ from non-heavy alcohol users in unadjusted or adjusted analyses. Cannabis use was significantly associated with drug RAB scores in unadjusted analyses (mean difference 1.7Β points) and analyses adjusted for age, sex, and employment (mean difference 1.3Β points). When also adjusting for stimulant use, the impact of cannabis use was attenuated and no longer statistically significant (mean difference 1.1Β points). Because of the central role of risky drug behaviors in the Russian HIV epidemic, it is important to understand how the use of multiple substances, including cannabis and alcohol, impacts risky drug behaviors

    Feasibility and initial efficacy of a culturally sensitive women-centered substance use intervention in Georgia: Sex risk outcomes

    Get PDF
    This paper reports on the feasibility and initial efficacy of a culturally sensitive, comprehensive women-centered substance use intervention for women who inject drugs in Georgia in terms of the primary and secondary sex risk outcomes. The hypothesis under examination was that, relative to case management participants, participants in a culturally sensitive, comprehensive women-specific and -centered intervention would, on average, show significant decreases in past-30-day frequency of unprotected sex, unprotected sex at the last sexual encounter, and increases in condom use and safer sex actions. The study was a two-arm randomized trial, in which 173 potentially eligible women were screened, and those 128 women determined to be eligible were assigned at random to either Reinforcement-based Treatment plus Women’s Co-Op (RBT + WC) or case management (CM). RBT + WC participants received 12 sessions of a structured intervention with the goal of reducing risky sex and substance use and improving physical and mental health. CM participants received 12 sessions of case management and informational brochures that focused on the same issues on which RBT + WC focused. Participants were assessed at baseline, post-treatment, and 3 months following treatment enrollment. Analyses revealed case management having significantly overall higher Safer Sex action scores than RBT + WC, and a significant decrease over time for past 30-day number of unprotected sex acts. Unprotected sex at the last encounter and Condom Use action scores were nonsignificant. Women who inject drugs in Georgia are engaging in risky sexual practices, and are in need of an intervention that addresses these risky behaviors. Reasons for the failure to find differences between a culturally sensitive, comprehensive women-centered intervention and case management tailored to the needs of women who inject drugs in Georgia may have been the result of inadequate power to detect an effect in a sample whose drug use was not as serious as warranted by the intervention. (ClinicalTrials.gov Identifier: NCT01331460)https://doi.org/10.1186/s13011-015-0043-

    Π Π•Π¦Π•ΠŸΠ’ΠžΠ  Π”ΠžΠ€ΠΠœΠ˜ΠΠ D2 (DRD2) Π›Π˜ΠœΠ€ΠžΠ¦Π˜Π’ΠžΠ’ ΠŸΠ•Π Π˜Π€Π•Π Π˜Π§Π•Π‘ΠšΠžΠ™ ΠšΠ ΠžΠ’Π˜ КАК Π‘Π˜ΠžΠœΠΠ ΠšΠ•Π  ΠŸΠ ΠžΠ“ΠΠžΠ—Π АНВИПБИΠ₯ΠžΠ’Π˜Π§Π•Π‘ΠšΠžΠ™ Π’Π•Π ΠΠŸΠ˜Π˜

    Get PDF
    Introduction. Despite the evolution of antipsychotic drugs, the problem of the therapy effectiveness and safety of schizophrenia spectrum disorders and comorbid conditions is very acute. The dopamine receptor D2 gene (DRD2) is one of the keyΒ targets of modern pharmacogenetic studies of mental disorders.The objective of the study was to analyze the DRD2 mRNA level in peripheral blood lymphocytes and to identify geneticΒ variations of –141Π‘ Ins/Del as potential biomarkers for antipsychotic therapy prognosis.Methods and materials. The study included 112 patients with mental disorders: 61 – with a diagnosis of schizophreniaΒ spectrum disorder, 51 – with a comorbid disease course with alcohol dependence syndrome, and 112 people as a controlΒ group. Psychometric evaluation was carried out using PANSS scale. The material was peripheral blood lymphocytes (PBLs).Β The DRD2 mRNA level was determined by real-time polymerase chain reaction with TaqMan probe. Genotyping –141Π‘Β Ins/Del was performed by the restriction fragment length polymorphism assay.Results. –141C Ins/Del DRD2 genetic variations are not associated with a risk of mental disorder development, andΒ they did not affect the DRD2 mRNA level in PBLs. There were no significant differences in the gene expression of DRD2 inΒ the control group and patients (p=0.194). Despite the improvement of the mental state in all patients included in the study,Β the studied DRD2 parameters did not affect either the mental disorder symptoms or the normalization of the patient statusΒ against the background of antipsychotic therapy. Ins/Ins genetic variation of –141C Ins/Del was significantly associatedΒ with an increase weight gain of more than 7 % on the 28th day of antipsychotic therapy.Conclusion. Ins/Ins genetic variation of –141C Ins/Del can be considered as a biomarker for the prognosis of antipsychotic-induced weight gain.Β Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅. НСсмотря Π½Π° ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΡŽ антипсихотичСских ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ², ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° эффСктивности ΠΈ бСзопасности Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ расстройств ΡˆΠΈΠ·ΠΎΡ„Ρ€Π΅Π½ΠΈΡ‡Π΅ΡΠΊΠΎΠ³ΠΎ спСктра ΠΈ ΠΊΠΎΠΌΠΎΡ€Π±ΠΈΠ΄Π½Ρ‹Ρ… с Π½ΠΈΠΌΠΈ состояний стоит ΠΎΡ‡Π΅Π½ΡŒ остро. Π“Π΅Π½ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π°Β Π΄ΠΎΡ„Π°ΠΌΠΈΠ½Π° Π”2 (DRD2) – ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² соврСмСнных фармакогСнСтичСских исслСдований Π² психиатрии.ЦСль исслСдования – ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π±ΠΈΠΎΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ² ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·Π° антипсихотичСской Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ Π½Π° основС молСкулярно-гСнСтичСских характСристик Π³Π΅Π½Π° DRD2 Π² Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚Π°Ρ… пСрифСричСской ΠΊΡ€ΠΎΠ²ΠΈ (уровня мРНК ΠΈ гСнСтичСских вариантов –141Π‘ Ins/Del).ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΈ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹. Π’ исслСдованиС Π²ΠΊΠ»ΡŽΡ‡Π΅Π½Ρ‹ 112 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с психичСскими патологиями: 61 – с диагнозом «Расстройство ΡˆΠΈΠ·ΠΎΡ„Ρ€Π΅Π½ΠΈΡ‡Π΅ΡΠΊΠΎΠ³ΠΎ спСктра», 51 – с ΠΊΠΎΠΌΠΎΡ€Π±ΠΈΠ΄Π½Ρ‹ΠΌ Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ расстройства ΡˆΠΈΠ·ΠΎΡ„Ρ€Π΅Π½ΠΈΡ‡Π΅ΡΠΊΠΎΠ³ΠΎ спСктра ΠΈ синдрома алкогольной зависимости ΠΈ 112 Π»ΠΈΡ† ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΡ‹. ΠŸΡΠΈΡ…ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΎΡ†Π΅Π½ΠΊΡƒ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ на основании ΡˆΠΊΠ°Π»Ρ‹ PANSS. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠΌ слуТили Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚Ρ‹ пСрифСричСской ΠΊΡ€ΠΎΠ²ΠΈ (Π›ΠŸΠš). Π£Ρ€ΠΎΠ²Π΅Π½ΡŒ мРНК Π³Π΅Π½Π°Β DRD2 опрСдСляли ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ПЦР Π² Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ с использованиСм Π·ΠΎΠ½Π΄Π° TaqMan. Π“Π΅Π½ΠΎΡ‚ΠΈΠΏΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ –141Π‘ Ins/Del – ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΠΎΠ»ΠΈΠΌΠΎΡ€Ρ„ΠΈΠ·ΠΌΠ° Π΄Π»ΠΈΠ½Ρ‹ рСстрикционных Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ².Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ГСнСтичСскиС Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ –141Π‘ Ins/Del DRD2 Π½Π΅ ассоциированы с риском развития психичСских патологий ΠΈ ΡƒΡ€ΠΎΠ²Π½Π΅ΠΌ мРНК Π³Π΅Π½Π° DRD2 Π² Π›ΠŸΠš. ЭкспрСссия Π³Π΅Π½Π° DRD2 Ρƒ Π»ΠΈΡ† ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΡ‹ ΠΈ ΠΏΡΠΈΡ…ΠΈΡ‡Π΅ΡΠΊΠΈΒ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π½Π΅ Ρ€Π°Π·Π»ΠΈΡ‡Π°Π»Π°ΡΡŒ (Ρ€=0,194). НСсмотря Π½Π° ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΠ΅ психичСского состояния Ρƒ всСх ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², Π²ΠΊΠ»ΡŽΡ‡Π΅Π½Π½Ρ‹Ρ… Π² исслСдованиС, ΠΈΠ·ΡƒΡ‡Π°Π΅ΠΌΡ‹Π΅ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ DRD2 Π½Π΅ ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π»ΠΈ влияния Π½ΠΈ Π½Π° симптоматику психичСских патологий, Π½ΠΈ Π½Π° Π½ΠΎΡ€ΠΌΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΡŽ статуса ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² Π½Π° Ρ„ΠΎΠ½Π΅ антипсихотичСской Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ. ГСнСтичСский Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Β Ins/Ins –141Π‘ Ins/Del статистичСски Π·Π½Π°Ρ‡ΠΈΠΌΠΎ ассоциировался с ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ массы Ρ‚Π΅Π»Π° Π±ΠΎΠ»Π΅Π΅ 7 % Π½Π° 28-ΠΉ Π΄Π΅Π½ΡŒΡ‚Π΅Ρ€Π°ΠΏΠΈΠΈ антипсихотиками.Π’Ρ‹Π²ΠΎΠ΄Ρ‹. ГСнСтичСский Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ Ins/Ins –141Π‘ Ins/Del ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ рассмотрСн Π² качСствС Π±ΠΈΠΎΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π° прогноза антипсихотик-ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π½Π°Π±ΠΎΡ€Π° массы Ρ‚Π΅Π»Π°.

    Comparing sexual risks and patterns of alcohol and drug use between injection drug users (IDUs) and non-IDUs who report sexual partnerships with IDUs in St. Petersburg, Russia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To date, the great majority of Russian HIV infections have been diagnosed among IDUs and concerns about the potential for a sexual transmission of HIV beyond the IDU population have increased. This study investigated differences in the prevalence of sexual risk behaviors between IDUs and non-IDUs in St. Petersburg, Russia and assessed associations between substance use patterns and sexual risks within and between those two groups.</p> <p>Methods</p> <p>Cross-sectional survey data and biological test results from 331 IDUs and 65 non-IDUs who have IDU sex partners were analyzed. Multivariate regression was employed to calculate measures of associations.</p> <p>Results</p> <p>IDUs were less likely than non-IDUs to report multiple sexual partners and unprotected sex with casual partners. The quantity, frequency and intensity of alcohol use did not differ between IDUs and non-IDUs, but non-IDUs were more likely to engage in alcohol use categorized as risky per the alcohol use disorders identification test (AUDIT-C). Risky sexual practices were independently associated with monthly methamphetamine injection among IDUs and with risky alcohol use among non-IDUs. Having sex when high on alcohol or drugs was associated with unprotected sex only among IDUs.</p> <p>Conclusions</p> <p>Greater prevalence of sexual risk among non-IDUs who have IDU sex partners compared to IDUs suggests the potential for sexual transmission of HIV from the high-prevalence IDU population into the general population. HIV prevention programs among IDUs in St. Petersburg owe special attention to risky alcohol use among non-IDUs who have IDU sex partners and the propensity of IDUs to have sex when high on alcohol or drugs and forgo condoms.</p

    Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress

    Get PDF
    In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse

    ЭкспрСссия Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π° Π΄ΠΎΡ„Π°ΠΌΠΈΠ½Π° DRD1 (мРНК, Π±Π΅Π»ΠΎΠΊ) Π² Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚Π°Ρ… пСрифСричСской ΠΊΡ€ΠΎΠ²ΠΈ ΠΈ ΠΏΡ€ΠΎΠ³Π½ΠΎΠ· антипсихотичСской Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ

    Get PDF
    Introduction. There is a problem in predicting the efficacy and safety of antipsychotic therapy. Dopamine receptor D1 is one of the targets of antipsychotics. Peripheral blood lymphocytes (PBL) are the research object of neurotransmission receptors.The objective was to study DRD1 gene expression (mRNA, protein level) in PBL as a possible biomarker of olanzapine and haloperidol therapy prognosis.Methods and Materials. Sample: 106 patients diagnosed with schizophrenic spectrum disorder. Study design: prospective longitudinal follow-up with drug administration by randomization. Assessment of mental status and development of Parkinsonism: Positive and Negative Syndrome Scale (PANSS) and Simpson-Agnus Scale (SAS), respectively. PBL was study material. DRD1 mRNA level was determined by real-time PCR. DRD1 protein concentration in PBL was measured by enzyme immunoassay.Results. Haloperidol (but not olanzapine) treatment for 28 days, leads to DRD1 protein concentration decrease in PBL in a manner dependent on its initial level. DRD1 mRNA level in PBL remained unchanged during the treatment. Patients with effective therapy by olanzapine had lower DRD1 mRNA levels. Side effects of the therapy (Parkinsonism, weight gain) were not associated with studied DRD1 parameters.Conclusions. Haloperidol treatment leads to a decrease of DRD1 protein concentration in PBL, which depends on the initial protein level. Effective olanzapine therapy is associated with reduced DRD1 mRNA level in PBL before the treatment.Β Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅. БущСствуСт ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·Π° эффСктивности ΠΈ бСзопасности Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ антипсихотичСскими ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π°ΠΌΠΈ, ΠΎΠ΄Π½Π° ΠΈΠ· мишСнСй ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… – Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ Π΄ΠΎΡ„Π°ΠΌΠΈΠ½Π° D1. Π›ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚Ρ‹ пСрифСричСской ΠΊΡ€ΠΎΠ²ΠΈ (Π›ΠŸΠš) – ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ исслСдования Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ² нСйротрансмиссии.ЦСль – ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ экспрСссии Π³Π΅Π½Π° DRD1 (мРНК, Π±Π΅Π»ΠΎΠΊ) Π² Π›ΠŸΠš ΠΊΠ°ΠΊ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠ³ΠΎ Π±ΠΈΠΎΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π° ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·Π° Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ ΠΎΠ»Π°Π½Π·Π°ΠΏΠΈΠ½ΠΎΠΌ ΠΈ Π³Π°Π»ΠΎΠΏΠ΅Ρ€ΠΈΠ΄ΠΎΠ»ΠΎΠΌ.ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΈ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹. Π’Ρ‹Π±ΠΎΡ€ΠΊΠ°: 106 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с Π΄ΠΈΠ°Π³Π½ΠΎΠ·ΠΎΠΌ «Расстройство ΡˆΠΈΠ·ΠΎΡ„Ρ€Π΅Π½ΠΈΡ‡Π΅ΡΠΊΠΎΠ³ΠΎ спСктра». Π”ΠΈΠ·Π°ΠΉΠ½ исслСдования: проспСктивноС Π»ΠΎΠ½Π³ΠΈΡ‚ΡƒΠ΄ΠΈΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ наблюдСниС с Π½Π°Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° ΠΏΡƒΡ‚Π΅ΠΌ Ρ€Π°Π½Π΄ΠΎΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ. ΠžΡ†Π΅Π½ΠΊΠ° психичСского статуса ΠΈ развития паркинсонизма: ΡˆΠΊΠ°Π»Ρ‹ ΠŸΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½Ρ‹Ρ… ΠΈ Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… синдромов (PANSS) ΠΈ Бимпсона Агнуса (SAS). ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» исслСдования – Π›ΠŸΠš. Π£Ρ€ΠΎΠ²Π΅Π½ΡŒ мРНК Π³Π΅Π½Π° DRD1 опрСдСляли ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π½ΠΎΠΉ Ρ†Π΅ΠΏΠ½ΠΎΠΉ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. ΠšΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡŽ Π±Π΅Π»ΠΊΠ° DRD1 Π² Π›ΠŸΠš измСряли ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΈΠΌΠΌΡƒΠ½ΠΎΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠŸΡ€ΠΈ воздСйствии Π³Π°Π»ΠΎΠΏΠ΅Ρ€ΠΈΠ΄ΠΎΠ»Π° (Π½ΠΎ Π½Π΅ ΠΎΠ»Π°Π½Π·Π°ΠΏΠΈΠ½Π°) Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 28 Π΄Π½Π΅ΠΉ концСнтрация Π±Π΅Π»ΠΊΠ° DRD1 Π² Π›ΠŸΠš сниТалась зависимо ΠΎΡ‚ Π΅Π³ΠΎ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ уровня. Π£Ρ€ΠΎΠ²Π΅Π½ΡŒ мРНК Π³Π΅Π½Π° DRD1 Π² Π›ΠŸΠš оставался Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΡ€ΠΈ дСйствии ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ². ΠŸΠ°Ρ†ΠΈΠ΅Π½Ρ‚Ρ‹ с эффСктивной Ρ‚Π΅Ρ€Π°ΠΏΠΈΠ΅ΠΉ ΠΎΠ»Π°Π½Π·Π°ΠΏΠΈΠ½ΠΎΠΌ ΠΈΠΌΠ΅Π»ΠΈ Π±ΠΎΠ»Π΅Π΅ Π½ΠΈΠ·ΠΊΠΈΠ΅ значСния уровня мРНК DRD1. ΠŸΠΎΠ±ΠΎΡ‡Π½Ρ‹Π΅ эффСкты Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ (паркинсонизм, Π½Π°Π±ΠΎΡ€ вСса) Π½Π΅ Π±Ρ‹Π»ΠΈ ассоциированы с ΠΈΠ·ΡƒΡ‡Π°Π΅ΠΌΡ‹ΠΌΠΈ характСристиками DRD1.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ДСйствиС Π³Π°Π»ΠΎΠΏΠ΅Ρ€ΠΈΠ΄ΠΎΠ»Π° ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ сниТСнию ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Π±Π΅Π»ΠΊΠ° DRD1 Π² Π›ΠŸΠš, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ зависит ΠΎΡ‚ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ уровня Π±Π΅Π»ΠΊΠ°. ЭффСктивная тСрапия ΠΎΠ»Π°Π½Π·Π°ΠΏΠΈΠ½ΠΎΠΌ ассоциирована с ΠΏΠΎΠ½ΠΈΠΆΠ΅Π½Π½Ρ‹ΠΌ ΡƒΡ€ΠΎΠ²Π½Π΅ΠΌ мРНК DRD1 Π² Π›ΠŸΠš Π΄ΠΎ Π½Π°Ρ‡Π°Π»Π° лСчСния.
    • …
    corecore