14 research outputs found

    Beam Charge Asymmetries for Deeply Virtual Compton Scattering on the Proton at CLAS12

    Full text link
    The parameterization of the nucleon structure through Generalized Parton Distributions (GPDs) shed a new light on the nucleon internal dynamics. For its direct interpretation, Deeply Virtual Compton Scattering (DVCS) is the golden channel for GPDs investigation. The DVCS process interferes with the Bethe-Heitler (BH) mechanism to constitute the leading order amplitude of the eNeNγeN \to eN\gamma process. The study of the epγep\gamma reaction with polarized positron and electron beams gives a complete set of unique observables to unravel the different contributions to the epγep \gamma cross section. This separates the different reaction amplitudes, providing a direct access to their real and imaginary parts which procures crucial constraints on the model dependences and associated systematic uncertainties on GPDs extraction. The real part of the BH-DVCS interference amplitude is particularly sensitive to the DD-term which parameterizes the Gravitational Form Factors of the nucleon. The separation of the imaginary parts of the interference and DVCS amplitudes provides insights on possible higher-twist effects. We propose to measure the unpolarized and polarized Beam Charge Asymmetries (BCAs) of the e±pe±pγ\vec{e}^{\pm}p \to e^{\pm}p \gamma process on an unpolarized hydrogen target with {\tt CLAS12}, using polarized positron and electron beams at 10.6~GeV. The azimuthal and tt-dependences of the unpolarized and polarized BCAs will be measured over a large (xB,Q2)(x_B,Q^2) phase space using a 100 day run with a luminosity of 0.66×1035\times 10^{35}cm2^{-2}\cdots1^{-1}.Comment: Proposal to the Jefferson Lab Program Advisory Committee (PAC51

    Beam Charge Asymmetries for Deeply Virtual Compton Scattering on the Proton at CLAS12

    No full text
    International audienceThe parameterization of the nucleon structure through Generalized Parton Distributions (GPDs) shed a new light on the nucleon internal dynamics. For its direct interpretation, Deeply Virtual Compton Scattering (DVCS) is the golden channel for GPDs investigation. The DVCS process interferes with the Bethe-Heitler (BH) mechanism to constitute the leading order amplitude of the eNeNγeN \to eN\gamma process. The study of the epγep\gamma reaction with polarized positron and electron beams gives a complete set of unique observables to unravel the different contributions to the epγep \gamma cross section. This separates the different reaction amplitudes, providing a direct access to their real and imaginary parts which procures crucial constraints on the model dependences and associated systematic uncertainties on GPDs extraction. The real part of the BH-DVCS interference amplitude is particularly sensitive to the DD-term which parameterizes the Gravitational Form Factors of the nucleon. The separation of the imaginary parts of the interference and DVCS amplitudes provides insights on possible higher-twist effects. We propose to measure the unpolarized and polarized Beam Charge Asymmetries (BCAs) of the e±pe±pγ\vec{e}^{\pm}p \to e^{\pm}p \gamma process on an unpolarized hydrogen target with {\tt CLAS12}, using polarized positron and electron beams at 10.6~GeV. The azimuthal and tt-dependences of the unpolarized and polarized BCAs will be measured over a large (xB,Q2)(x_B,Q^2) phase space using a 100 day run with a luminosity of 0.66×1035\times 10^{35}cm2^{-2}\cdots1^{-1}

    Beam Charge Asymmetries for Deeply Virtual Compton Scattering on the Proton at CLAS12

    No full text
    International audienceThe parameterization of the nucleon structure through Generalized Parton Distributions (GPDs) shed a new light on the nucleon internal dynamics. For its direct interpretation, Deeply Virtual Compton Scattering (DVCS) is the golden channel for GPDs investigation. The DVCS process interferes with the Bethe-Heitler (BH) mechanism to constitute the leading order amplitude of the eNeNγeN \to eN\gamma process. The study of the epγep\gamma reaction with polarized positron and electron beams gives a complete set of unique observables to unravel the different contributions to the epγep \gamma cross section. This separates the different reaction amplitudes, providing a direct access to their real and imaginary parts which procures crucial constraints on the model dependences and associated systematic uncertainties on GPDs extraction. The real part of the BH-DVCS interference amplitude is particularly sensitive to the DD-term which parameterizes the Gravitational Form Factors of the nucleon. The separation of the imaginary parts of the interference and DVCS amplitudes provides insights on possible higher-twist effects. We propose to measure the unpolarized and polarized Beam Charge Asymmetries (BCAs) of the e±pe±pγ\vec{e}^{\pm}p \to e^{\pm}p \gamma process on an unpolarized hydrogen target with {\tt CLAS12}, using polarized positron and electron beams at 10.6~GeV. The azimuthal and tt-dependences of the unpolarized and polarized BCAs will be measured over a large (xB,Q2)(x_B,Q^2) phase space using a 100 day run with a luminosity of 0.66×1035\times 10^{35}cm2^{-2}\cdots1^{-1}

    Smart Technologies. SmartTech-IC 2021: Proceedings of the Second International Conference on Smart Technologies, Systems and Applications

    No full text
    This book contains a group of selected papers, which were presented at the Second International Conference on Smart Technologies, Systems and Applications (SmartTech-IC 2021) held on December 1-3, 2021 in Quito, Ecuador. The SmartTech-IC conference aims to attract researchers, scientists and technologists from some of the top companies, universities, research groups, and government agencies from Latin America and around of the world to communicate their research results, inventions and innovative applications in the area of smart science and the most recent smart technological trends. The second edition of SmartTech-IC conference was organized by the Universidad Politécnica Salesiana (Campus Giron), a private institution of higher education with social purposes, nonprofit and co-financed from the Ecuadorian State. The SmartTech-IC conference has been conceived as an academic platform to promote the creation of technical and scientific collaboration networks. The goal of the conference was addressed some relevant topics related to smart technologies, smart systems, smart trends and applications in different domains in the field of computer science and information systems that represent innovation in current society
    corecore