17,908 research outputs found

    Electric Dipole Moments in the Generic Supersymmetric Standard Model

    Get PDF
    The generic supersymmetric standard model is a model built from a supersymmetrized standard model field spectrum the gauge symmetries only. The popular minimal supersymmetric standard model differs from the generic version in having R-parity imposed by hand. We review an efficient formulation of the model and some of the recently obtained interesting phenomenological features, focusing on one-loop contributions to fermion electric dipole moments.Comment: 1+7 pages Revtex 3 figures incoporated; talk at NANP'0

    Neutrino Oscillations from Supersymmetry without R-parity - Its Implications on the Flavor Structure of the Theory

    Get PDF
    We discuss here some flavor structure aspects of the complete theory of supersymmetry without R-parity addressed from the perspective of fitting neutrino oscillation data based on the recent Super-Kamiokande result. The single-VEV parametrization of supersymmetry without R-parity is first reviewed, illustrating some important features not generally appreciated. For the flavor structure discussions, a naive, flavor model independent, analysis is presented, from which a few interesting things can be learned.Comment: 1+10 pages latex, no figure; Invited talk at NANP 99 conference, Dubna (Jun 28 - Jul 3) --- submission for the proceeding

    Little Higgs Model Completed with a Chiral Fermionic Sector

    Full text link
    The implementation of the little Higgs mechanism to solve the hierarchy problem provides an interesting guiding principle to build particle physics models beyond the electroweak scale. Most model building works, however, pay not much attention to the fermionic sector. Through a case example, we illustrate how a complete and consistent fermionic sector of the TeV effective field theory may actually be largely dictated by the gauge structure of the model. The completed fermionic sector has specific flavor physics structure, and many phenomenological constraints on the model can thus be obtained beyond gauge, Higgs, and top physics. We take a first look on some of the quark sector constraints.Comment: 14 revtex pages with no figure, largely a re-written version of hep-ph/0307250 with elaboration on flavor sector FCNC constraints; accepted for publication in Phys.Rev.

    Correlations and fluctuations of a confined electron gas

    Full text link
    The grand potential Ω\Omega and the response R=Ω/xR = - \partial \Omega /\partial x of a phase-coherent confined noninteracting electron gas depend sensitively on chemical potential μ\mu or external parameter xx. We compute their autocorrelation as a function of μ\mu, xx and temperature. The result is related to the short-time dynamics of the corresponding classical system, implying in general the absence of a universal regime. Chaotic, diffusive and integrable motions are investigated, and illustrated numerically. The autocorrelation of the persistent current of a disordered mesoscopic ring is also computed.Comment: 12 pages, 1 figure, to appear in Phys. Rev.

    The narrow X-ray tail and double H-alpha tails of ESO 137-002 in Abell 3627

    Get PDF
    We present the analysis of a deep Chandra observation of a ~2L_* late-type galaxy, ESO 137-002, in the closest rich cluster A3627. The Chandra data reveal a long (>40 kpc) and narrow tail with a nearly constant width (~3 kpc) to the southeast of the galaxy, and a leading edge ~1.5 kpc from the galaxy center on the upstream side of the tail. The tail is most likely caused by the nearly edge-on stripping of ESO 137-002's ISM by ram pressure, compared to the nearly face-on stripping of ESO 137-001 discussed in our previous work. Spectral analysis of individual regions along the tail shows that the gas throughout it has a rather constant temperature, ~1 keV, very close to the temperature of the tails of ESO 137-001, if the same atomic database is used. The derived gas abundance is low (~0.2 solar with the single-kT model), an indication of the multiphase nature of the gas in the tail. The mass of the X-ray tail is only a small fraction (<5%) of the initial ISM mass of the galaxy, suggesting that the stripping is most likely at an early stage. However, with any of the single-kT, double-kT and multi-kT models we tried, the tail is always "over-pressured" relative to the surrounding ICM, which could be due to the uncertainties in the abundance, thermal vs. non-thermal X-ray emission, or magnetic support in the ICM. The H-alpha data from SOAR show a ~21 kpc tail spatially coincident with the X-ray tail, as well as a secondary tail (~12 kpc long) to the east of the main tail diverging at an angle of ~23 degrees and starting at a distance of ~7.5 kpc from the nucleus. At the position of the secondary H-alpha tail, the X-ray emission is also enhanced at the ~2 sigma level. We compare the tails of ESO 137-001 and ESO 137-002, and also compare the tails to simulations. Both the similarities and differences of the tails pose challenges to the simulations. Several implications are briefly discussed.Comment: 15 pages, 6 figures, accepted for publication in Ap

    Correlated X-ray and Optical Variability in V404 Cyg in Quiescence

    Get PDF
    We report simultaneous X-ray and optical observations of V404 Cyg in quiescence. The X-ray flux varied dramatically by a factor of >20 during a 60ks observation. X-ray variations were well correlated with those in Halpha, although the latter include an approximately constant component as well. Correlations can also be seen with the optical continuum, although these are less clear. We see no large lag between X-ray and optical line variations; this implies they are causally connected on short timescales. As in previous observations, Halpha flares exhibit a double-peaked profile suggesting emission distributed across the accretion disk. The peak separation is consistent with material extending outwards to at least the circularization radius. The prompt response in the entire Halpha line confirms that the variability is powered by X-ray (and/or EUV) irradiation.Comment: 5 pages; Accepted for publication in the Astrophysical Journal Letter

    Smoking-gun signatures of little Higgs models

    Full text link
    Little Higgs models predict new gauge bosons, fermions and scalars at the TeV scale that stabilize the Higgs mass against quadratically divergent one-loop radiative corrections. We categorize the many little Higgs models into two classes based on the structure of the extended electroweak gauge group and examine the experimental signatures that identify the little Higgs mechanism in addition to those that identify the particular little Higgs model. We find that by examining the properties of the new heavy fermion(s) at the LHC, one can distinguish the structure of the top quark mass generation mechanism and test the little Higgs mechanism in the top sector. Similarly, by studying the couplings of the new gauge bosons to the light Higgs boson and to the Standard Model fermions, one can confirm the little Higgs mechanism and determine the structure of the extended electroweak gauge group.Comment: 59 pages, 10 figures. v2: refs added, typos fixed, JHEP versio

    Dicyclic Horizontal Symmetry and Supersymmetric Grand Unification

    Get PDF
    It is shown how to use as horizontal symmetry the dicyclic group Q6SU(2)Q_6 \subset SU(2) in a supersymmetric unification SU(5)SU(5)SU(2)SU(5)\otimes SU(5)\otimes SU(2) where one SU(5)SU(5) acts on the first and second families, in a horizontal doublet, and the other acts on the third. This can lead to acceptable quark masses and mixings, with an economic choice of matter supermultiplets, and charged lepton masses can be accommodated.Comment: 10 pages, LaTe
    corecore