24 research outputs found

    Analysis of a General Family of Regularized Navier-Stokes and MHD Models

    Get PDF
    We consider a general family of regularized Navier-Stokes and Magnetohydrodynamics (MHD) models on n-dimensional smooth compact Riemannian manifolds with or without boundary, with n greater than or equal to 2. This family captures most of the specific regularized models that have been proposed and analyzed in the literature, including the Navier-Stokes equations, the Navier-Stokes-alpha model, the Leray-alpha model, the Modified Leray-alpha model, the Simplified Bardina model, the Navier-Stokes-Voight model, the Navier-Stokes-alpha-like models, and certain MHD models, in addition to representing a larger 3-parameter family of models not previously analyzed. We give a unified analysis of the entire three-parameter family using only abstract mapping properties of the principle dissipation and smoothing operators, and then use specific parameterizations to obtain the sharpest results. We first establish existence and regularity results, and under appropriate assumptions show uniqueness and stability. We then establish results for singular perturbations, including the inviscid and alpha limits. Next we show existence of a global attractor for the general model, and give estimates for its dimension. We finish by establishing some results on determining operators for subfamilies of dissipative and non-dissipative models. In addition to establishing a number of results for all models in this general family, the framework recovers most of the previous results on existence, regularity, uniqueness, stability, attractor existence and dimension, and determining operators for well-known members of this family.Comment: 37 pages; references added, minor typos corrected, minor changes to revise for publicatio

    A data assimilation algorithm: The paradigm of the 3D Leray-α model of turbulence

    No full text
    In this paper we survey the various implementations of a new data assimilation (downscaling) algorithm based on spatial coarse mesh measurements. As a paradigm, we demonstrate the application of this algorithm to the 3D Leray-α subgrid scale turbulence model. Most importantly, we use this paradigm to show that it is not always necessary to collect coarse mesh measurements of all the state variables that are involved in the underlying evolutionary system, in order to recover the corresponding exact reference solution. Specifically, we show that in the case of the 3D Leray-α model of turbulence, the solutions of the algorithm, constructed using only coarse mesh observations of any two components of the three-dimensional velocity field, and without any information on the third component, converge, at an exponential rate in time, to the corresponding exact reference solution of the 3D Leray-α model. This study serves as an addendum to our recent work on abridged continuous data assimilation for the 2D Navier-Stokes equations. Notably, similar results have also been recently established for the 3D viscous Planetary Geostrophic circulation model in which we show that coarse mesh measurements of the temperature alone are sufficient for recovering, through our data assimilation algorithm, the full solution; i.e. the three components of velocity vector field and the temperature. Consequently, this proves the Charney conjecture for the 3D Planetary Geostrophic model; namely, that the history of the large spatial scales of temperature is sufficient for determining all the other quantities (state variables) of the model
    corecore