535 research outputs found

    Radio-Frequency Single-Electron Refrigerator

    Get PDF
    We propose a cyclic refrigeration principle based on mesoscopic electron transport. Synchronous sequential tunnelling of electrons in a Coulomb-blockaded device, a normal metal-superconductor single-electron box, results in a cooling power of ∼kBT×f\sim k_{\rm B}T \times f at temperature TT over a wide range of cycle frequencies ff. Electrostatic work, done by the gate voltage source, removes heat from the Coulomb island with an efficiency of ∼kBT/Δ\sim k_{\rm B}T/\Delta, where Δ\Delta is the superconducting gap. The performance is not affected significantly by non-idealities, for instance by offset charges. We propose ways of characterizing the system and of its practical implementation.Comment: 5 pages, 4 figures; corrected typos, language improve

    Occupational lead neurotoxicity: Improvement in behavioural effects after reduction of exposure.

    Full text link
    To evaluate critical exposure levels and the reversibility of lead neurotoxicity a group of lead exposed foundry workers and an unexposed reference population were followed up for three years. During this period, tests designed to monitor neurobehavioural function and lead dose were administered. Evaluations of 160 workers during the first year showed dose dependent decrements in mood, visual/motor performance, memory, and verbal concept formation. Subsequently, an improvement in the hygienic conditions at the plant resulted in striking reductions in blood lead concentrations over the following two years. Attendant improvement in indices of tension (20% reduction), anger (18%), depression (26%), fatigue (27%), and confusion (13%) was observed. Performance on neurobehavioural testing generally correlated best with integrated dose estimates derived from blood lead concentrations measured periodically over the study period; zinc protoporphyrin levels were less well correlated with function. This investigation confirms the importance of compliance with workplace standards designed to lower exposures to ensure that individual blood lead concentrations remain below 50 micrograms/dl

    Frequency-Dependent Shot Noise as a Probe of Electron-Electron Interaction in Mesoscopic Diffusive Contacts

    Full text link
    The frequency-dependent shot noise in long and narrow mesoscopic diffusive contacts is numerically calculated. The case of arbitrarily strong electron-electron scattering and zero temperature of electrodes is considered. For all voltages, the noise increases with frequency and tends to finite values. These limiting values are larger than the Poissonian noise and increase nearly as voltage to power 4/3. This allows one to experimentally determine the parameters of electron-electron interaction.Comment: 3 pages, RevTeX, 3 eps figure

    Coulomb Drag for Strongly Localized Electrons: Pumping Mechanism

    Full text link
    The mutual influence of two layers with strongly loclized electrons is exercised through the random Coulomb shifts of site energies in one layer caused by electron hops in the other layer. We trace how these shifts give rise to a voltage drop in the passive layer, when a current is passed through the active layer. We find that the microscopic origin of drag lies in the time correlations of the occupation numbers of the sites involved in a hop. These correlations are neglected within the conventional Miller-Abrahams scheme for calculating the hopping resistance.Comment: 5 pages, 3 figure

    Effect of Magnetic Impurities on Energy Exchange between Electrons

    Get PDF
    In order to probe quantitatively the effect of Kondo impurities on energy exchange between electrons in metals, we have compared measurements on two silver wires with dilute magnetic impurities (manganese) introduced in one of them. The measurement of the temperature dependence of the electron phase coherence time on the wires provides an independent determination of the impurity concentration. Quantitative agreement on the energy exchange rate is found with a theory by G\"{o}ppert et al. that accounts for Kondo scattering of electrons on spin-1/2 impurities.Comment: 4 page

    Nonequilibrium Electron Distribution in Presence of Kondo Impurities

    Full text link
    We study the energy relaxation of quasiparticles in voltage biased mesoscopic wires in presence of magnetic impurities. The renormalization of the exchange interaction of Kondo impurities coupled to conduction electrons is extended to the case of a nonequilibrium electron distribution, which is determined self-consistently from a Boltzmann equation with a collision term due to Kondo impurity mediated electron-electron scattering. The approach leads to predictions in quantitative agreement with recent experiments by Pothier et al. [Phys. Rev. Lett. 79, 3490 (1997)].Comment: 4 pages, 3 figure

    Conductance Fluctuations in a Metallic Wire Interrupted by a Tunnel Junction

    Full text link
    The conductance fluctuations of a metallic wire which is interrupted by a small tunnel junction has been explored experimentally. In this system, the bias voltage V, which drops almost completely inside the tunnel barrier, is used to probe the energy dependence of conductance fluctuations due to disorder in the wire. We find that the variance of the fluctuations is directly proportional to V. The experimental data are consistently described by a theoretical model with two phenomenological parameters: the phase breaking time at low temperatures and the diffusion coefficient.Comment: 9 pages RevTeX and 4 PS figures (accepted for publication in Physical Review Letters

    On Which Length Scales Can Temperature Exist in Quantum Systems?

    Full text link
    We consider a regular chain of elementary quantum systems with nearest neighbor interactions and assume that the total system is in a canonical state with temperature TT. We analyze under what condition the state factors into a product of canonical density matrices with respect to groups of nn subsystems each, and when these groups have the same temperature TT. While in classical mechanics the validity of this procedure only depends on the size of the groups nn, in quantum mechanics the minimum group size nminn_{\text{min}} also depends on the temperature TT ! As examples, we apply our analysis to different types of Heisenberg spin chains.Comment: To appear in: Proceedings of the SPQS conference, J. Phys. Soc. Jpn. 74 (2005) Supp

    Mesoscopic mechanism of adiabatic charge transport

    Full text link
    We consider adiabatic charge transport through mesoscopic metallic samples caused by a periodically changing external potential. We find that both the amplitude and the sign of the charge transferred through a sample per period are random sample specific quantities. The characteristic magnitude of the charge is determined by the quantum interference.Comment: 4 pages, 2 figure

    Counting statistics for arbitrary cycles in quantum pumps

    Full text link
    Statistics of charge transport in an adiabatic pump are determined by the dynamics of the scattering matrix S(t). We show that, up to an integer offset, the statistics depend only on the corresponding path N(t)=S^\dagger\sigma_3 S in the coset space (the sphere for a single channel). For a general loop S(t) we solve for the noise-minimizing pumping strategy. The average current is given by the area enclosed by N(t) in the coset space; its minimal noise by the area of a minimal surface (soap film) spanned by N(t) in the space of all matrices. We formulate conditions for quantization of the pumped charge.Comment: 4 pages, 2 figure
    • …
    corecore