81 research outputs found

    Combinatorial Strategy for Studying Biochemical Pathways in Double Emulsion Templated Cell-Sized Compartments

    Get PDF
    Abstract Cells rely upon producing enzymes at precise rates and stoichiometry for maximizing functionalities. The reasons for this optimal control are unknown, primarily because of the interconnectivity of the enzymatic cascade effects within multi-step pathways. Here, an elegant strategy for studying such behavior, by controlling segregation/combination of enzymes/metabolites in synthetic cell-sized compartments, while preserving vital cellular elements is presented. Therefore, compartments shaped into polymer GUVs are developed, producing via high-precision double-emulsion microfluidics that enable: i) tight control over the absolute and relative enzymatic contents inside the GUVs, reaching nearly 100% encapsulation and co-encapsulation efficiencies, and ii) functional reconstitution of biopores and membrane proteins in the GUVs polymeric membrane, thus supporting in situ reactions. GUVs equipped with biopores/membrane proteins and loaded with one or more enzymes are arranged in a variety of combinations that allow the study of a three-step cascade in multiple topologies. Due to the spatiotemporal control provided, optimum conditions for decreasing the accumulation of inhibitors are unveiled, and benefited from reactive intermediates to maximize the overall cascade efficiency in compartments. The non-system-specific feature of the novel strategy makes this system an ideal candidate for the development of new synthetic routes as well as for screening natural and more complex pathways

    Stabilizing single atom contacts by molecular bridge formation

    Get PDF
    Gold-molecule-gold junctions can be formed by carefully breaking a gold wire in a solution containing dithiolated molecules. Surprisingly, there is little understanding on the mechanical details of the bridge formation process and specifically on the role that the dithiol molecules play themselves. We propose that alkanedithiol molecules have already formed bridges between the gold electrodes before the atomic gold-gold junction is broken. This leads to stabilization of the single atomic gold junction, as observed experimentally. Our data can be understood within a simple spring model.Comment: 14 pages, 3 figures, 1 tabl

    Negative Differential Resistance in ZnO Nanowires Bridging Two Metallic Electrodes

    Get PDF
    The electrical transport through nanoscale contacts of ZnO nanowires bridging the interdigitated Au electrodes shows the negative differential resistance (NDR) effect. The NDR peaks strongly depend on the starting sweep voltage. The origin of NDR through nanoscale contacts between ZnO nanowires and metal electrodes is the electron charging and discharging of the parasitic capacitor due to the weak contact, rather than the conventional resonant tunneling mechanism

    Vibration induced memory effects and switching in ac-driven molecular nanojunctions

    Get PDF
    We investigate bistability and memory effects in a molecular junction weakly coupled to metallic leads with the latter being subject to an adiabatic periodic change of the bias voltage. The system is described by a simple Anderson-Holstein model and its dynamics is calculated via a master equation approach. The controlled electrical switching between the many-body states of the system is achieved due to polaron shift and Franck-Condon blockade in the presence of strong electron-vibron interaction. Particular emphasis is given to the role played by the excited vibronic states in the bistability and hysteretic switching dynamics as a function of the voltage sweeping rates. In general, both the occupation probabilities of the vibronic states and the associated vibron energy show hysteretic behaviour for driving frequencies in a range set by the minimum and maximum lifetimes of the system. The consequences on the transport properties for various driving frequencies and in the limit of DC-bias are also investigated.Comment: 15 pages, 20 figures, published versio

    Green function techniques in the treatment of quantum transport at the molecular scale

    Full text link
    The theoretical investigation of charge (and spin) transport at nanometer length scales requires the use of advanced and powerful techniques able to deal with the dynamical properties of the relevant physical systems, to explicitly include out-of-equilibrium situations typical for electrical/heat transport as well as to take into account interaction effects in a systematic way. Equilibrium Green function techniques and their extension to non-equilibrium situations via the Keldysh formalism build one of the pillars of current state-of-the-art approaches to quantum transport which have been implemented in both model Hamiltonian formulations and first-principle methodologies. We offer a tutorial overview of the applications of Green functions to deal with some fundamental aspects of charge transport at the nanoscale, mainly focusing on applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references, submitted to Springer series "Lecture Notes in Physics

    Cardiovascular mortality and exposure to extremely low frequency magnetic fields: a cohort study of Swiss railway workers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exposure to intermittent magnetic fields of 16 Hz has been shown to reduce heart rate variability, and decreased heart rate variability predicts cardiovascular mortality. We examined mortality from cardiovascular causes in railway workers exposed to varying degrees to intermittent 16.7 Hz magnetic fields.</p> <p>Methods</p> <p>We studied a cohort of 20,141 Swiss railway employees between 1972 and 2002, including highly exposed train drivers (median lifetime exposure 120.5 ÎŒT-years), and less or little exposed shunting yard engineers (42.1 ÎŒT-years), train attendants (13.3 ÎŒT-years) and station masters (5.7 ÎŒT-years). During 464,129 person-years of follow up, 5,413 deaths were recorded and 3,594 deaths were attributed to cardio-vascular diseases. We analyzed data using Cox proportional hazards models.</p> <p>Results</p> <p>For all cardiovascular mortality the hazard ratio compared to station masters was 0.99 (95%CI: 0.91, 1.08) in train drivers, 1.13 (95%CI: 0.98, 1.30) in shunting yard engineers, and 1.09 (95%CI: 1.00, 1.19) in train attendants.Corresponding hazard ratios for arrhythmia related deaths were 1.04 (95%CI: 0.68, 1.59), 0.58 (95%CI: 0.24, 1.37) and 1.30 (95%CI: 0.87, 1.93) and for acute myocardial infarction 1.00 (95%CI: 0.73, 1.36), 1.56 (95%CI: 1.04, 2.32), and 1.14 (95%CI: 0.85, 1.53). The hazard ratio for arrhythmia related deaths per 100 ÎŒT-years of cumulative exposure was 0.94 (95%CI: 0.71, 1.24) and 0.91 (95%CI: 0.75, 1.11) for acute myocardial infarction.</p> <p>Conclusion</p> <p>This study provides evidence against an association between long-term occupational exposure to intermittent 16.7 Hz magnetic fields and cardiovascular mortality.</p

    Collectively Induced Quantum-Confined Stark Effect in Monolayers of Molecules Consisting of Polar Repeating Units

    Get PDF
    • 

    corecore