718 research outputs found

    Transmission Line Analogy for Relativistic Poynting-Flux Jets

    Full text link
    Radio emission, polarization, and Faraday rotation maps of the radio jet of the galaxy 3C 303 have shown that one knot of this jet carries a {\it galactic}-scale electric current and that it is magnetically dominated. We develop the theory of magnetically dominated or Poynting-flux jets by making an analogy of a Poynting jet with a transmission line or waveguide carrying a net current and having a potential drop across it (from the jet's axis to its radius) and a definite impedance which we derive. Time-dependent but not necessarily small perturbations of a Poynting-flux jet are described by the "telegrapher's equations." These predict the propagation speed of disturbances and the effective wave impedance for forward and backward propagating wave components. A localized disturbance of a Poynting jet gives rise to localized dissipation in the jet which may explain the enhanced synchrotron radiation in the knots of the 3C 303 jet, and also in the apparently stationary knot HST-1 in the jet near the nucleus of the nearby galaxy M87. For a relativistic Poynting jet on parsec scales, the reflected voltage wave from an inductive termination or load can lead to a backward propagating wave which breaks down the magnetic insulation of the jet giving ∣E∣/∣B∣≥1|{\bf E}| /|{\bf B}|\geq 1. At the threshold for breakdown, ∣E∣/∣B∣=1|{\bf E}|/|{\bf B}|=1, positive and negative particles are directly accelerated in the E×B{\bf E \times B} direction which is approximately along the jet axis. Acceleration can occur up to Lorentz factors ∼107\sim 10^7. This particle acceleration mechanism is distinct from that in shock waves and that in magnetic field reconnection.Comment: 8 pages, 6 figure

    Wave model for longitudinal dispersion: Application to the laminar-flow tubular reactor

    Get PDF
    The wave model for longitudinal dispersion, published elsewhere as an alternative to the commonly used dispersed plug-flow model, is applied to the classic case of the laminar-flow tubular reactor. The results are compared in a wide range of situations to predictions by the dispersed plug-flow model as well as to exact numerical calculations with the 2-D model of the reactor and to other available methods. In many practical cases, the solutions of the wave model agree closely with the exact data. The wave model has a much wider region of validity than the dispersed plug-flow model, has a distinct physical background, and is easier to use for reactor calculations. This provides additional support to the theory developed elsewhere. The properties and the applicability of the wave model to situations with rapidly changing concentration fields are discussed. Constraints to be satisfied are established to use the new theory with confidence for arbitrary initial and boundary conditions

    Wave Concept in the Theory of Hydrodynamical Dispersion - a Maxwellian Type Approach

    Get PDF
    A new approach to the modelling of chemical reactors and contactors is discussed. This approach argues that the dispersion should, under most circumstances, be based on Maxwell's, rather than Fick's diffusion law. As a pair of first-order partial differential equations of the hyperbolic type and requiring only inlet conditions, the wave model is more realistic physically, has a much wider range of validity and in many practical cases is simpler mathematically. Only mass transfer problems are considered, but the results apply equally well to the hydrodynamic dispersion of heat. It is explained why the standard dispersion model fails in many practical applications and why the new wave model gives much better results

    Oxygen and hydrogen ion abundance in the near-Earth magnetosphere: Statistical results on the response to the geomagnetic and solar wind activity conditions

    Full text link
    The composition of ions plays a crucial role for the fundamental plasma properties in the terrestrial magnetosphere. We investigate the oxygen-to-hydrogen ratio in the near-Earth magnetosphere from -10 RE<XGSE}< 10 RE. The results are based on seven years of ion flux measurements in the energy range ~10 keV to ~955 keV from the RAPID and CIS instruments on board the Cluster satellites. We find that (1) hydrogen ions at ~10 keV show only a slight correlation with the geomagnetic conditions and interplanetary magnetic field changes. They are best correlated with the solar wind dynamic pressure and density, which is an expected effect of the magnetospheric compression; (2) ~10 keV O+ ion intensities are more strongly affected during disturbed phase of a geomagnetic storm or substorm than >274 keV O+ ion intensities, relative to the corresponding hydrogen intensities; (3) In contrast to ~10 keV ions, the >274 keV O+ ions show the strongest acceleration during growth phase and not during the expansion phase itself. This suggests a connection between the energy input to the magnetosphere and the effective energization of energetic ions during growth phase; (4) The ratio between quiet and disturbed times for the intensities of ion ionospheric outflow is similar to those observed in the near-Earth magnetosphere at >274 keV. Therefore, the increase of the energetic ion intensity during disturbed time is more likely due to the intensification than to the more effective acceleration of the ionospheric source. In conclusion, the energization process in the near-Earth magnetosphere is mass dependent and it is more effective for the heavier ions

    A New Radio - X-Ray Probe of Galaxy Cluster Magnetic Fields

    Get PDF
    Results are presented of a new VLA-ROSAT study that probes the magnetic field strength and distribution over a sample of 16 ``normal'' low redshift (z < 0.1) galaxy clusters. The clusters span two orders of magnitude in X-ray luminosity, and were selected to be free of (unusual) strong radio cluster halos, and widespread cooling flows. Consistent with these criteria, most clusters show a relaxed X-ray morphology and little or no evidence for recent merger activity. Analysis of the rotation measure (RM) data shows cluster-generated Faraday RM excess out to ~0.5 Mpc from cluster centers. The results, combined with RM imaging of cluster-embedded sources and ROSAT X-ray profiles indicates that the hot intergalactic gas within these ``normal'' clusters is permeated with a high filling factor by magnetic fields at levels of = 5-10 (l/10 kpc)^{-1/2} microGauss, where l is the field correlation length. These results lead to a global estimate of the total magnetic energy in clusters, and give new insight into the ultimate energy origin, which is likely gravitational. These results also shed some light on the cluster evolutionary conditions that existed at the onset of cooling flows.Comment: 6 pages, 1 figure, uses emulateapj5.sty, accepted by ApJ

    A summary of observational records on periodicities above the rotational period in the Jovian magnetosphere

    Get PDF
    The Jovian magnetosphere is a very dynamic system. The plasma mass-loading from the moon Io and the fast planetary rotation lead to regular release of mass from the Jovian magnetosphere and to a change of the magnetic topology. These regular variations, most commonly on several (2.5–4) days scale, were derived from various data sets obtained by different spacecraft missions and instruments ranging from auroral images to in situ measurements of magnetospheric particles. Specifically, ion measurements from the Galileo spacecraft represent the periodicities, very distinctively, namely the periodic thinning of the plasma sheet and subsequent dipolarization, and explosive mass release occurring mainly during the transition between these two phases. We present a review of these periodicities, particularly concentrating on those observed in energetic particle data. The most distinct periodicities are observed for ions of sulfur and oxygen. The periodic topological change of the Jovian magnetosphere, the associated mass-release process and auroral signatures can be interpreted as a global magnetospheric instability with analogies to the two step concept of terrestrial substorms. Different views on the triggering mechanism of this magnetospheric instability are discussed

    Detection of microgauss coherent magnetic fields in a galaxy five billion years ago

    Full text link
    Magnetic fields play a pivotal role in the physics of interstellar medium in galaxies, but there are few observational constraints on how they evolve across cosmic time. Spatially resolved synchrotron polarization maps at radio wavelengths reveal well-ordered large-scale magnetic fields in nearby galaxies that are believed to grow from a seed field via a dynamo effect. To directly test and characterize this theory requires magnetic field strength and geometry measurements in cosmologically distant galaxies, which are challenging to obtain due to the limited sensitivity and angular resolution of current radio telescopes. Here, we report the cleanest measurements yet of magnetic fields in a galaxy beyond the local volume, free of the systematics traditional techniques would encounter. By exploiting the scenario where the polarized radio emission from a background source is gravitationally lensed by a foreground galaxy at z = 0.439 using broadband radio polarization data, we detected coherent μ\muG magnetic fields in the lensing disk galaxy as seen 4.6 Gyrs ago, with similar strength and geometry to local volume galaxies. This is the highest redshift galaxy whose observed coherent magnetic field property is compatible with a mean-field dynamo origin.Comment: 29 pages, 5 figures (including Supplementary Information). Published in Nature Astronomy on August 28, 201

    Heating Hot Atmospheres with Active Galactic Nuclei

    Full text link
    High resolution X-ray spectroscopy of the hot gas in galaxy clusters has shown that the gas is not cooling to low temperatures at the predicted rates of hundreds to thousands of solar masses per year. X-ray images have revealed giant cavities and shock fronts in the hot gas that provide a direct and relatively reliable means of measuring the energy injected into hot atmospheres by active galactic nuclei (AGN). Average radio jet powers are near those required to offset radiative losses and to suppress cooling in isolated giant elliptical galaxies, and in larger systems up to the richest galaxy clusters. This coincidence suggests that heating and cooling are coupled by feedback, which suppresses star formation and the growth of luminous galaxies. How jet energy is converted to heat and the degree to which other heating mechanisms are contributing, eg. thermal conduction, are not well understood. Outburst energies require substantial late growth of supermassive black holes. Unless all of the approximately 10E62 erg required to suppress star formation is deposited in the cooling regions of clusters, AGN outbursts must alter large-scale properties of the intracluster medium.Comment: 60 pages, 12 figures, to appear in 1997 Annual Reviews of Astronomy and Astrophysics. This version supersedes the April 2007 version in Reviews in Advance (references and minor corrections were added), and is similar to the one scheduled to appear in Volume 45 of ARA
    • …
    corecore