115 research outputs found

    Regulation of the apoptotic genes in breast cancer cells by the transcription factor CTCF

    Get PDF
    CTCF is a highly conserved and ubiquitous transcription factor with versatile functions. We previously demonstrated that elevated protein levels of CTCF in breast cancer cells were associated with the specific anti-apoptotic function of CTCF. We used proteomics and microarray approaches to identify regulatory targets of CTCF specific for breast cancer cells. Among the CTCF identified targets were proteins involved in the control of apoptosis. A proapoptotic protein, Bax, negatively regulated by CTCF, was chosen for further investigation. Repression of the human Bax gene at the transcriptional level by CTCF in breast cancer cells was confirmed by real-time PCR. Two CTCF binding sites within the Bax promoter were identified by electrophoretic mobility shift assay and footprinting. In reporter assays, the Bax-luciferase reporter construct, containing CTCF-binding sites, was negatively regulated by CTCF. In vivo, CTCF occupied its binding sites in breast cancer cells and tissues, as confirmed by chromatin immunoprecipitation assay. Our findings suggest a possible mechanism of the specific CTCF anti-apoptotic function in breast cancer cells whereby CTCF is bound to the Bax promoter, resulting in repression of Bax and inhibition of apoptosis; depletion of CTCF leads to activation of Bax and apoptotic death. CTCF binding sites in the Bax promoter are unmethylated in all cells and tissues inspected. Therefore, specific CTCF interaction with the Bax promoter in breast cancer cells, and the functional outcome, may depend on a combination of epigenetic factors characteristic for these cells. Interestingly, CTCF appears to be a negative regulator of other proapoptotic genes (for example, Fas, Apaf-1, TP531NP1). Conversely, stimulating effects of CTCF on the anti-apoptotic genes (Bcl-2, Bag-3) have been observed. Taken together, these findings suggest that specific mechanisms have evolved in breast cancer cells to protect them from apoptosis; regulation of apoptotic genes by CTCF appears to be one of the resistance strategies

    Widespread Expression of BORIS/CTCFL in Normal and Cancer Cells

    Get PDF
    BORIS (CTCFL) is the paralog of CTCF (CCCTC-binding factor; NM_006565), a ubiquitously expressed DNA-binding protein with diverse roles in gene expression and chromatin organisation. BORIS and CTCF have virtually identical zinc finger domains, yet display major differences in their respective C- and N-terminal regions. Unlike CTCF, BORIS expression has been reported only in the testis and certain malignancies, leading to its classification as a “cancer-testis” antigen. However, the expression pattern of BORIS is both a significant and unresolved question in the field of DNA binding proteins. Here, we identify BORIS in the cytoplasm and nucleus of a wide range of normal and cancer cells. We compare the localization of CTCF and BORIS in the nucleus and demonstrate enrichment of BORIS within the nucleolus, inside the nucleolin core structure and adjacent to fibrillarin in the dense fibrillar component. In contrast, CTCF is not enriched in the nucleolus. Live imaging of cells transiently transfected with GFP tagged BORIS confirmed the nucleolar accumulation of BORIS. While BORIS transcript levels are low compared to CTCF, its protein levels are readily detectable. These findings show that BORIS expression is more widespread than previously believed, and suggest a role for BORIS in nucleolar function

    BORIS, a paralogue of the transcription factor, CTCF, is aberrantly expressed in breast tumours

    Get PDF
    BORIS (for brother of the regulator of imprinted sites), a paralogue of the transcription factor, CTCF, is a novel member of the cancer-testis antigen family. The aims of the present study were as follows: (1) to investigate BORIS expression in breast cells and tumours using immunohistochemical staining, western and real-time RT–PCR analyses and (2) assess potential correlation between BORIS levels in tumours with clinical/pathological parameters. BORIS was detected in all 18 inspected breast cell lines, but not in a primary normal breast cell culture. In 70.7% (41 of 58 cases) BORIS was observed in breast tumours. High levels of BORIS correlated with high levels of progesterone receptor (PR) and oestrogen receptor (ER). The link between BORIS and PR/ER was further confirmed by the ability of BORIS to activate the promoters of the PR and ER genes in the reporter assays. Detection of BORIS in a high proportion of breast cancer patients implies potential practical applications of BORIS as a molecular biomarker of breast cancer. This may be important for diagnosis of the condition and for the therapeutic use of BORIS. The ability of BORIS to activate promoters of the RP and ER genes points towards possible involvement of BORIS in the establishment, progression and maintenance of breast tumours

    Somatically acquired hypomethylation of IGF2 in breast and colorectal cancer

    Get PDF
    The imprinted insulin-like growth factor 2 (IGF2) gene is expressed predominantly from the paternal allele. Loss of imprinting (LOI) associated with hypomethylation at the promoter proximal sequence (DMR0) of the IGF2 gene was proposed as a predisposing constitutive risk biomarker for colorectal cancer. We used pyrosequencing to assess whether IGF2 DMR0 methylation is either present constitutively prior to cancer or whether it is acquired tissue-specifically after the onset of cancer. DNA samples from tumour tissues and matched non-tumour tissues from 22 breast and 42 colorectal cancer patients as well as peripheral blood samples obtained from colorectal cancer patients [SEARCH (n=case 192, controls 96)], breast cancer patients [ABC (n=case 364, controls 96)] and the European Prospective Investigation of Cancer [EPIC-Norfolk (n=breast 228, colorectal 225, controls 895)] were analysed. The EPIC samples were collected 2–5 years prior to diagnosis of breast or colorectal cancer. IGF2 DMR0 methylation levels in tumours were lower than matched non-tumour tissue. Hypomethylation of DMR0 was detected in breast (33%) and colorectal (80%) tumour tissues with a higher frequency than LOI indicating that methylation levels are a better indicator of cancer than LOI. In the EPIC population, the prevalence of IGF2 DMR0 hypomethylation was 9.5% and this correlated with increased age not cancer risk. Thus, IGF2 DMR0 hypomethylation occurs as an acquired tissue-specific somatic event rather than a constitutive innate epimutation. These results indicate that IGF2 DMR0 hypomethylation has diagnostic potential for colon cancer rather than value as a surrogate biomarker for constitutive LOI

    Simultaneous genotyping of multiple polymorphisms in human serotonin transporter gene and detection of novel allelic variants

    Get PDF
    The serotonin transporter, called SLC6A4, SERT or 5-HTT, modulates neurotransmission by removal of serotonin from the synapse of serotonergic neurons, facilitating serotonin reuptake into the presynaptic terminus. Selective serotonin reuptake inhibitors block the action of the serotonin transporter and are used to treat depression and other neuropsychiatric disorders. Three polymorphisms in the 5-HTT gene have been implicated in treatment response and neuropsychiatric disorders. A 44-bp promoter ins/del polymorphism (5-HTTLPR) produces primarily long and/or short alleles due to either 14 (short) or 16 (long) repeats of variably conserved 20–23 bp units. Also implicated, a 17–18 bp variable number tandem repeat found in intron2 (StIn2) is expressed as triallelic content with 9, 10, or 12 repeats (StIn2.9, StIn2.10 or StIn2.12). Finally, a single nucleotide polymorphism rs25531 located within the promoter polymorphic-linked region alters the function of the long promoter allele. We developed a PCR-based fragment analysis assay, which is analyzed on an ABI sequencer, whereby we are able to detect all three genotypes simultaneously. Using this technique, we identified novel sequences, which demonstrate promoter repeat regions containing (1) a 17 repeat with rs25531 A/G polymorphism, (2) two with 18-repeat units, (3) one with 20-repeat units and (4) a 24-repeat sequence. The novel repeats were confirmed by direct sequencing of gel-purified amplicons

    Cloning and characterization of a novel alternatively spliced transcript of the human CHD7 putative helicase

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>CHD7 </it>(Chromodomain Helicase DNA binding protein 7) gene encodes a member of the chromodomain family of ATP-dependent chromatin remodeling enzymes. Mutations in the <it>CHD7 </it>gene are found in individuals with CHARGE, a syndrome characterized by multiple birth malformations in several tissues. CHD7 was identified as a binding partner of PBAF complex (Polybromo and BRG Associated Factor containing complex) playing a central role in the transcriptional reprogramming process associated to the formation of multipotent migratory neural crest, a transient cell population associated with the genesis of various tissues. <it>CHD7 </it>is a large gene containing 38 annotated exons and spanning 200 kb of genomic sequence. Although genes containing such number of exons are expected to have several alternative transcripts, there are very few evidences of alternative transcripts associated to <it>CHD7 </it>to date indicating that alternative splicing associated to this gene is poorly characterized.</p> <p>Findings</p> <p>Here, we report the cloning and characterization by experimental and computational studies of a novel alternative transcript of the human <it>CHD7 </it>(named CHD7 CRA_e), which lacks most of its coding exons. We confirmed by overexpression of CHD7 CRA_e alternative transcript that it is translated into a protein isoform lacking most of the domains displayed by the canonical isoform. Expression of the CHD7 CRA_e transcript was detected in normal liver, in addition to the DU145 human prostate carcinoma cell line from which it was originally isolated.</p> <p>Conclusions</p> <p>Our findings indicate that the splicing event associated to the CHD7 CRA_e alternative transcript is functional. The characterization of the CHD7 CRA_e novel isoform presented here not only sets the basis for more detailed functional studies of this isoform, but, also, contributes to the alternative splicing annotation of the <it>CHD7 </it>gene and the design of future functional studies aimed at the elucidation of the molecular functions of its gene products.</p
    corecore