886 research outputs found

    Dynamical mean field theory of optical third harmonic generation

    Full text link
    We formulate the third harmonic generation (THG) within the dynamical mean field theory (DMFT) approximation of the Hubbard model. In the limit of large dimensions, where DMFT becomes exact, the vertex corrections to current vertices are identically zero, and hence the calculation of the THG spectrum reduces to a time-ordered convolution, followd by appropriate analytic continuuation. We present the typical THG spectrum of the Hubbard model obtained by this method. Within our DMFT calculation, we observe a nontrivial approximate {\em scaling} function describing the THG spectra in all Mott insulators, independent of the gap magnitude.Comment: 4 eps figure

    Nonlinear Optical Response in two-dimensional Mott Insulators

    Full text link
    We study the third-order nonlinear optical susceptibility Ļ‡(3)\chi^{(3)} and photoexcited states of two-dimensional (2D) Mott insulators by using an effective model in the strong-coupling limit of a half-filled Hubbard model. In the numerically exact diagonalization calculations on finite-size clusters, we find that the coupling of charge and spin degrees of freedom plays a crucial role in the distribution of the dipole-allowed states with odd parity and the dipole-forbidden states with even parity in the photoexcited states. This is in contrast with the photoexcited states in one dimension, where the charge and spin degrees of freedom are decoupled. In the third-harmonic generation (THG) spectrum, main contribution is found to come from the process of three-photon resonance associated with the odd-parity states. As a result, the two-photon resonance process is less pronounced in the THG spectrum. The calculated THG spectrum is compared with recent experimental data. We also find that Ļ‡(3)\chi^{(3)} with cross-polarized configuration of pump and probe photons shows spectral distributions similar to Ļ‡(3)\chi^{(3)} with co-polarized configuration, although the weight is small. These findings will help the analyses of the experimental data of Ļ‡(3)\chi^{(3)} in the 2D Mott insulators.Comment: 9 pages,5 figures,RevTeX

    Nonlinear Optical Response of Spin Density Wave Insulators

    Full text link
    We calculate the third order nonlinear optical response in the Hubbard model within the spin density wave (SDW) mean field ansatz in which the gap is due to onsite Coulomb repulsion. We obtain closed-form analytical results in one dimension (1D) and two dimension (2D), which show that nonlinear optical response in SDW insulators in 2D is stronger than both 3D and 1D. We also calculate the two photon absorption (TPA) arising from the stress tensor term. We show that in the SDW, the contribution from stress tensor term to the low-energy peak corresponding to two photon absorption becomes identically zero if we consider the gauge invariant current properly.Comment: we use \psfrag in figur

    Nonlinear Optical Response Functions of Mott Insulators Based on Dynamical Mean Field Approximation

    Full text link
    We investigate the nonlinear optical susceptibilities of Mott insulators with the dynamical mean field approximation. The two-photon absorption (TPA) and the third-harmonic generation (THG) spectra are calculated, and the classification by the types of coupling to external fields shows different behavior from conventional semiconductors. The direct transition terms are predominant both in the TPA and THG spectra, and the importance of taking all types of interaction with the external field into account is illustrated in connection with the THG spectrum and dcKerr effect. The dependence of the TPA and THG spectra on the Coulomb interaction indicate a scaling relation. We apply this relation to the quantitative evaluation and obtain results comparable to those of experiments.Comment: 14 pages, 12 figure

    Chimeric Systems Composed of Swapped Tra Subunits Between Distantly-Related F Plasmids Reveal Striking Plasticity Among Type IV Secretion Machines

    Get PDF
    Bacterial type IV secretion systems (T4SSs) are a versatile family of macromolecular translocators, collectively able to recruit diverse DNA and protein substrates and deliver them to a wide range of cell types. Presently, there is little understanding of how T4SSs recognize substrate repertoires and form productive contacts with specific target cells. Although T4SSs are composed of a number of conserved subunits and adopt certain conserved structural features, they also display considerable compositional and structural diversity. Here, we explored the structural bases underlying the functional versatility of T4SSs through systematic deletion and subunit swapping between two conjugation systems encoded by the distantly-related IncF plasmids, pED208 and F. We identified several regions of intrinsic flexibility among the encoded T4SSs, as evidenced by partial or complete functionality of chimeric machines. Swapping of VirD4-like TraD type IV coupling proteins (T4CPs) yielded functional chimeras, indicative of relaxed specificity at the substrate-TraD and TraD-T4SS interfaces. Through mutational analyses, we further delineated domains of the TraD T4CPs contributing to recruitment of cognate vs heterologous DNA substrates. Remarkably, swaps of components comprising the outer membrane core complexes, a few F-specific subunits, or the TraA pilins supported DNA transfer in the absence of detectable pilus production. Among sequenced enterobacterial species in the NCBI database, we identified many strains that harbor two or more F-like plasmids and many F plasmids lacking one or more T4SS components required for self-transfer. We confirmed that host cells carrying co-resident, non-selftransmissible variants of pED208 and F elaborate chimeric T4SSs, as evidenced by transmission of both plasmids. We propose that T4SS plasticity enables the facile assembly of functional chimeras, and this intrinsic flexibility at the structural level can account for functional diversification of this superfamily over evolutionary time and, on a more immediate time-scale, to proliferation of transfer-defective MGEs in nature

    Angle-resolved photoemission study of MX-chain compound [Ni(chxn)2_2Br]Br2_2

    Full text link
    We report on the results of angle-resolved photoemission experiments on a quasi-one-dimensional MXMX-chain compound [Ni(chxn)2_2Br]Br2_2 (chxn = 1RR,2RR-cyclohexanediamine), a one-dimensional Heisenberg system with S=1/2S=1/2 and Jāˆ¼3600J \sim 3600 K, which shows a gigantic non-linear optical effect. A "band" having about 500 meV energy dispersion is found in the first half of the Brillouin zone (0ā‰¤kb/Ļ€<1/2)(0\le kb/\pi <1/2), but disappears at kb/Ļ€āˆ¼1/2kb / \pi \sim 1/2. Two dispersive features, expected from the spin-charge separation, as have been observed in other quasi-one-dimensional systems like Sr2_2CuO3_3, are not detected. These characteristic features are well reproduced by the dd-pp chain model calculations with a small charge-transfer energy Ī”\Delta compared with that of one-dimensional Cu-O based compounds. We propose that this smaller Ī”\Delta is the origin of the absence of clear spin- and charge-separation in the photoemission spectra and strong non-linear optical effect in [Ni(chxn)2_2Br]Br2_2.Comment: 4 pages, 3 figure

    Optical excitations in a one-dimensional Mott insulator

    Full text link
    The density-matrix renormalization-group (DMRG) method is used to investigate optical excitations in the Mott insulating phase of a one-dimensional extended Hubbard model. The linear optical conductivity is calculated using the dynamical DMRG method and the nature of the lowest optically excited states is investigated using a symmetrized DMRG approach. The numerical calculations agree perfectly with field-theoretical predictions for a small Mott gap and analytical results for a large Mott gap obtained with a strong-coupling analysis. Is is shown that four types of optical excitations exist in this Mott insulator: pairs of unbound charge excitations, excitons, excitonic strings, and charge-density-wave (CDW) droplets. Each type of excitations dominates the low-energy optical spectrum in some region of the interaction parameter space and corresponds to distinct spectral features: a continuum starting at the Mott gap (unbound charge excitations), a single peak or several isolated peaks below the Mott gap (excitons and excitonic strings, respectively), and a continuum below the Mott gap (CDW droplets).Comment: 12 pages (REVTEX 4), 12 figures (in 14 eps files), 1 tabl

    Parity forbidden excitations of Sr2CuO2Cl2 revealed by optical third-harmonic spectroscopy

    Full text link
    We present the first study of nonlinear optical third harmonic generation in the strongly correlated charge-transfer insulator Sr2CuO2Cl2. For fundamental excitation in the near-infrared, the THG spectrum reveals a strongly resonant response for photon energies near 0.7 eV. Polarization analysis reveals this novel resonance to be only partially accounted for by three-photon excitation to the optical charge-transfer exciton, and indicates that an even-parity excitation at 2 eV, with a_1g symmetry, participates in the third harmonic susceptibility.Comment: Requires RevTeX v4.0beta
    • ā€¦
    corecore