886 research outputs found
Dynamical mean field theory of optical third harmonic generation
We formulate the third harmonic generation (THG) within the dynamical mean
field theory (DMFT) approximation of the Hubbard model. In the limit of large
dimensions, where DMFT becomes exact, the vertex corrections to current
vertices are identically zero, and hence the calculation of the THG spectrum
reduces to a time-ordered convolution, followd by appropriate analytic
continuuation. We present the typical THG spectrum of the Hubbard model
obtained by this method. Within our DMFT calculation, we observe a nontrivial
approximate {\em scaling} function describing the THG spectra in all Mott
insulators, independent of the gap magnitude.Comment: 4 eps figure
Nonlinear Optical Response in two-dimensional Mott Insulators
We study the third-order nonlinear optical susceptibility and
photoexcited states of two-dimensional (2D) Mott insulators by using an
effective model in the strong-coupling limit of a half-filled Hubbard model. In
the numerically exact diagonalization calculations on finite-size clusters, we
find that the coupling of charge and spin degrees of freedom plays a crucial
role in the distribution of the dipole-allowed states with odd parity and the
dipole-forbidden states with even parity in the photoexcited states. This is in
contrast with the photoexcited states in one dimension, where the charge and
spin degrees of freedom are decoupled. In the third-harmonic generation (THG)
spectrum, main contribution is found to come from the process of three-photon
resonance associated with the odd-parity states. As a result, the two-photon
resonance process is less pronounced in the THG spectrum. The calculated THG
spectrum is compared with recent experimental data. We also find that
with cross-polarized configuration of pump and probe photons shows
spectral distributions similar to with co-polarized configuration,
although the weight is small. These findings will help the analyses of the
experimental data of in the 2D Mott insulators.Comment: 9 pages,5 figures,RevTeX
Nonlinear Optical Response of Spin Density Wave Insulators
We calculate the third order nonlinear optical response in the Hubbard model
within the spin density wave (SDW) mean field ansatz in which the gap is due to
onsite Coulomb repulsion. We obtain closed-form analytical results in one
dimension (1D) and two dimension (2D), which show that nonlinear optical
response in SDW insulators in 2D is stronger than both 3D and 1D. We also
calculate the two photon absorption (TPA) arising from the stress tensor term.
We show that in the SDW, the contribution from stress tensor term to the
low-energy peak corresponding to two photon absorption becomes identically zero
if we consider the gauge invariant current properly.Comment: we use \psfrag in figur
Nonlinear Optical Response Functions of Mott Insulators Based on Dynamical Mean Field Approximation
We investigate the nonlinear optical susceptibilities of Mott insulators with
the dynamical mean field approximation. The two-photon absorption (TPA) and the
third-harmonic generation (THG) spectra are calculated, and the classification
by the types of coupling to external fields shows different behavior from
conventional semiconductors. The direct transition terms are predominant both
in the TPA and THG spectra, and the importance of taking all types of
interaction with the external field into account is illustrated in connection
with the THG spectrum and dcKerr effect. The dependence of the TPA and THG
spectra on the Coulomb interaction indicate a scaling relation. We apply this
relation to the quantitative evaluation and obtain results comparable to those
of experiments.Comment: 14 pages, 12 figure
Chimeric Systems Composed of Swapped Tra Subunits Between Distantly-Related F Plasmids Reveal Striking Plasticity Among Type IV Secretion Machines
Bacterial type IV secretion systems (T4SSs) are a versatile family of macromolecular translocators, collectively able to recruit diverse DNA and protein substrates and deliver them to a wide range of cell types. Presently, there is little understanding of how T4SSs recognize substrate repertoires and form productive contacts with specific target cells. Although T4SSs are composed of a number of conserved subunits and adopt certain conserved structural features, they also display considerable compositional and structural diversity. Here, we explored the structural bases underlying the functional versatility of T4SSs through systematic deletion and subunit swapping between two conjugation systems encoded by the distantly-related IncF plasmids, pED208 and F. We identified several regions of intrinsic flexibility among the encoded T4SSs, as evidenced by partial or complete functionality of chimeric machines. Swapping of VirD4-like TraD type IV coupling proteins (T4CPs) yielded functional chimeras, indicative of relaxed specificity at the substrate-TraD and TraD-T4SS interfaces. Through mutational analyses, we further delineated domains of the TraD T4CPs contributing to recruitment of cognate vs heterologous DNA substrates. Remarkably, swaps of components comprising the outer membrane core complexes, a few F-specific subunits, or the TraA pilins supported DNA transfer in the absence of detectable pilus production. Among sequenced enterobacterial species in the NCBI database, we identified many strains that harbor two or more F-like plasmids and many F plasmids lacking one or more T4SS components required for self-transfer. We confirmed that host cells carrying co-resident, non-selftransmissible variants of pED208 and F elaborate chimeric T4SSs, as evidenced by transmission of both plasmids. We propose that T4SS plasticity enables the facile assembly of functional chimeras, and this intrinsic flexibility at the structural level can account for functional diversification of this superfamily over evolutionary time and, on a more immediate time-scale, to proliferation of transfer-defective MGEs in nature
Angle-resolved photoemission study of MX-chain compound [Ni(chxn)Br]Br
We report on the results of angle-resolved photoemission experiments on a
quasi-one-dimensional -chain compound [Ni(chxn)Br]Br (chxn =
1,2-cyclohexanediamine), a one-dimensional Heisenberg system with
and K, which shows a gigantic non-linear optical effect. A "band"
having about 500 meV energy dispersion is found in the first half of the
Brillouin zone , but disappears at . Two
dispersive features, expected from the spin-charge separation, as have been
observed in other quasi-one-dimensional systems like SrCuO, are not
detected. These characteristic features are well reproduced by the -
chain model calculations with a small charge-transfer energy compared
with that of one-dimensional Cu-O based compounds. We propose that this smaller
is the origin of the absence of clear spin- and charge-separation in
the photoemission spectra and strong non-linear optical effect in
[Ni(chxn)Br]Br.Comment: 4 pages, 3 figure
Recommended from our members
PEER Arizona strong-motion database and GMPEs evaluation
This report summarizes the products and results of a study on the collection, processing, and analysis of earthquake ground-motions recorded in Arizona at several recording stations within 200 km from the Palo Verde Nuclear Generating Station in central Arizona. The recorded ground motion in Arizona were compiled and processed according to the Pacific Earthquake Engineering Research Centerās (PEER) record-processing standards. Shear wave velocity profiles at ten recording stations were measured through the spectral analysis of surface wave dispersion technique. Additionally, ākappaā a measure of energy dissipation in the top 1 to 2 km of the crust, was estimated by three methodologies. The average Īŗ0 (kappa at zero-kilometer distance) was estimated from all sites as 0.033 sec. Finally, response spectra of the recorded ground motions in Arizona were compared with those predicted by the NGA-West2 ground motion prediction equations at large distances in Arizona. The comparison showed that overall the recorded 5% damped response spectral ordinates were over predicted by the NGA-West2 models by a range of 0-0.35 natural log units for events occurring in Central California, and by a range of 0.2-0.7 natural log units for events occurring in Southern California and the Gulf of California
Optical excitations in a one-dimensional Mott insulator
The density-matrix renormalization-group (DMRG) method is used to investigate
optical excitations in the Mott insulating phase of a one-dimensional extended
Hubbard model. The linear optical conductivity is calculated using the
dynamical DMRG method and the nature of the lowest optically excited states is
investigated using a symmetrized DMRG approach. The numerical calculations
agree perfectly with field-theoretical predictions for a small Mott gap and
analytical results for a large Mott gap obtained with a strong-coupling
analysis. Is is shown that four types of optical excitations exist in this Mott
insulator: pairs of unbound charge excitations, excitons, excitonic strings,
and charge-density-wave (CDW) droplets. Each type of excitations dominates the
low-energy optical spectrum in some region of the interaction parameter space
and corresponds to distinct spectral features: a continuum starting at the Mott
gap (unbound charge excitations), a single peak or several isolated peaks below
the Mott gap (excitons and excitonic strings, respectively), and a continuum
below the Mott gap (CDW droplets).Comment: 12 pages (REVTEX 4), 12 figures (in 14 eps files), 1 tabl
Parity forbidden excitations of Sr2CuO2Cl2 revealed by optical third-harmonic spectroscopy
We present the first study of nonlinear optical third harmonic generation in
the strongly correlated charge-transfer insulator Sr2CuO2Cl2. For fundamental
excitation in the near-infrared, the THG spectrum reveals a strongly resonant
response for photon energies near 0.7 eV. Polarization analysis reveals this
novel resonance to be only partially accounted for by three-photon excitation
to the optical charge-transfer exciton, and indicates that an even-parity
excitation at 2 eV, with a_1g symmetry, participates in the third harmonic
susceptibility.Comment: Requires RevTeX v4.0beta
- ā¦