144 research outputs found

    Comparing phenomenological recipes with a microscopic model for the electric amplitude in strangeness photoproduction

    Full text link
    Corrections to the Born approximation in photo-induced strangeness production off a proton are calculated in a semi-realistic microscopic model. The vertex corrections and internal contributions to the amplitude of the γp→K+Λ\gamma p \to K^+ \Lambda reaction are included on the one-loop level. Different gauge-invariant phenomenological prescriptions for the modification of the Born contribution via the introduction of form factors and contact terms are discussed. In particular, it is shown that the popular minimal-substitution method of Ohta corresponds to a special limit of the more realistic approach.Comment: 10 pages, 6 figures in the tex

    Gauge-Invariant Approach to Meson Photoproduction Including the Final-State Interaction

    Get PDF
    A gauge-invariant formalism is presented for the practical treatment of photo- and electroproduction of pseudoscalar mesons off nucleons that allows an explicit incorporation of hadronic final-state interactions. The semi-phenomenological approach is based on a field theory developed by one of the authors. It generalizes an earlier approach by allowing for systematic improvement of approximations in a controlled manner. The practical feasibility is illustrated by applying the lowest-order result to the photoproduction of both neutral and charged pions.Comment: Plenary talk given at the N*2005 Workshop (Oct. 2005, Tallahassee, FL); to appear in the Proceedings (to be publ. by WorldScientific

    Extragalactic Zeeman Detections in OH Megamasers

    Full text link
    We have measured the Zeeman splitting of OH megamaser emission at 1667 MHz from five (ultra)luminous infrared galaxies ([U]LIRGs) using the 305 m Arecibo telescope and the 100 m Green Bank Telescope. Five of eight targeted galaxies show significant Zeeman-splitting detections, with 14 individual masing components detected and line-of-sight magnetic field strengths ranging from ~0.5-18 mG. The detected field strengths are similar to those measured in Galactic OH masers, suggesting that the local process of massive star formation occurs under similar conditions in (U)LIRGs and the Galaxy, in spite of the vastly different large-scale environments. Our measured field strengths are also similar to magnetic field strengths in (U)LIRGs inferred from synchrotron observations, implying that milligauss magnetic fields likely pervade most phases of the interstellar medium in (U)LIRGs. These results provide a promising new tool for probing the astrophysics of distant galaxies.Comment: 32 pages, 14 figures, 8 tables. Accepted for publication in The Astrophysical Journal v680n2, June 20, 2008; corrected 2 typo

    Local gauge invariance implies Siegert's hypothesis

    Get PDF
    The nonrelativistic Ward-Takahashi identity, a consequence of local gauge invariance in quantum mechanics, shows the necessity of exchange current contributions in case of nonlocal and/or isospin-dependent potentials. It also implies Siegert's hypothesis: in the nonrelativistic limit, two-body charge densities identically vanish. Neither current conservation, which follows from global gauge invariance, nor the constraints of (lowest order) relativity are sufficient to arrive at this result. Furthermore, a low-energy theorem for exchange contributions is established.Comment: 5 pages, REVTE

    Preserving the gauge invariance of meson production currents in the presence of explicit final-state interactions

    Get PDF
    A comprehensive formalism is developed to preserve the gauge invariance of currents describing the photo- or electroproduction of mesons off the nucleon when the final-state interactions of mesons and nucleons is taken into account explicitly. Replacing exchange currents by auxiliary currents, it is found that all contributions due to explicit final-state interactions are purely transverse and do not contain a Kroll-Ruderman-type contact current. The relation of the present formulation to tree-level-type prescriptions is shown.Comment: 6 pages, 2 figures; published versio

    Gauge-invariant theory of pion photoproduction with dressed hadrons

    Get PDF
    Based on an effective field theory of hadrons in which quantum chromodynamics is assumed to provide the necessary bare cutoff functions, a gauge-invariant theory of pion photoproduction with fully dressed nucleons is developed. The formalism provides consistent dynamical descriptions of pi-N --> pi-N scattering and Gamma-N --> pi-N production mechanisms in terms of nonlinear integral equations for fully dressed hadrons. Defining electromagnetic currents via the gauging of hadronic n-point Green's functions, dynamically detailed currents for dressed nucleons are introduced. The dressed hadron currents and the pion photoproduction current are explicitly shown to satisfy gauge invariance in a self-consistent manner. Approximations are discussed that make the nonlinear formalism manageable in practice and yet preserve gauge invariance. This is achieved by recasting the gauge conditions for all contributing interaction currents as continuity equations with ``surface'' terms for the individual particle legs coming into or going out of the hadronic interaction region. General procedures are given that approximate any type of (global) interaction current in a gauge-invariance preserving manner as a sum of single-particle ``surface'' currents. It is argued that these prescriptions carry over to other reactions, irrespective of the number or type of contributing hadrons or hadronic systems.Comment: 33 pages, RevTeX; includes 8 postscript figures (requires psfig.sty). This version corrects some minor errors, etc.; contains updated references. Accepted for publication in Phys. Rev. C56 (Oct. 97

    Pion electroproduction, PCAC, chiral Ward identities, and the axial form factor revisited

    Full text link
    We re-investigate Adler's PCAC relation in the presence of an external electromagnetic field within the framework of QCD coupled to external fields. We discuss pion electroproduction within a tree-level approximation to chiral perturbation theory and explicitly verify a chiral Ward identity referred to as the Adler-Gilman relation. We critically examine soft-momentum techniques and point out how inadmissable approximations may lead to results incompatible with chiral symmetry. As a result we confirm that threshold pion electroproduction is indeed a tool to obtain information on the axial form factor of the nucleon.Comment: 33 pages, RevTex, 9 figure

    1D Exciton Spectroscopy of Semiconductor Nanorods

    Full text link
    We have theoretically shown that optical properties of semiconductor nanorods are controlled by 1D excitons. The theory, which takes into account anisotropy of spacial and dielectric confinement, describes size dependence of interband optical transitions, exciton binding energies. We have demonstrated that the fine structure of the ground exciton state explains the linear polarization of photoluminescence. Our results are in good agreement with the measurements in CdSe nanorods
    • …
    corecore