14 research outputs found

    The Onset of Phase Transitions in Condensed Matter and Relativistic QFT

    Full text link
    Kibble and Zurek have provided a unifying causal picture for the appearance of topological defects like cosmic strings or vortices at the onset of phase transitions in relativistic QFT and condensed matter systems respectively. There is no direct experimental evidence in QFT, but in condensed matter the predictions are largely, but not wholly, supported in superfluid experiments on liquid helium. We provide an alternative picture for the initial appearance of strings/vortices that is commensurate with all the experimental evidence from condensed matter and consider some of its implications for QFT.Comment: 37 pages, to be published in Condensed Matter Physics, 200

    Ortho-para transition in molecular hydrogen

    Full text link
    The radiative ortho-para transition in the molecular hydrogen is studied. This highly forbidden transition is very sensitive to relativistic and subtle nonadiabatic effects. Our result for the transition rate in the ground vibrational level \Gamma(J=1\to J=0) = 6.20(62)\cdot 10^{-14} \iyr is significantly lower in comparison to all the previous approximate calculations. Experimental detection of such a weak line by observation of, for example, the cold interstellar molecular hydrogen is at present unlikely.Comment: 4 pages, submitted to Phys. Rev.

    Testing the Kibble-Zurek Scenario with Annular Josephson Tunnel Junctions

    Full text link
    In parallel with Kibble's description of the onset of phase transitions in the early universe, Zurek has provided a simple picture for the onset of phase transitions in condensed matter systems, strongly supported by agreement with experiments in He3. In this letter we show how experiments with annular Josephson tunnel Junctions can and do provide further support for this scenario.Comment: Revised version with correct formula for the Swihart velocity. The results are qualitatively the same as with the previous version but differ quantitatively. 4 pages, RevTe

    Estimation of vortex density after superconducting film quench

    Full text link
    This paper addresses the problem of vortex formation during a rapid quench in a superconducting film. It builds on previous work showing that in a local gauge theory there are two distinct mechanisms of defect formation, based on fluctuations of the scalar and gauge fields, respectively. We show how vortex formation in a thin film differs from the fully two-dimensional case, on which most theoretical studies have focused. We discuss ways of testing theoretical predictions in superconductor experiments and analyse the results of recent experiments in this light.Comment: 7 pages, no figure

    Dynamics of Quantum Phase Transition in an Array of Josephson Junctions

    Full text link
    We study the dynamics of the Mott insulator-superfluid quantum phase transition in a periodic 1D array of Josephson junctions. We show that crossing the critical point diabatically i.e. at a finite rate with a quench time τQ\tau_Q induces finite quantum fluctuations of the current around the loop proportional to τQ1/6\tau_Q^{-1/6}. This scaling could be experimentally verified with in array of weakly coupled Bose-Einstein condensates or superconducting grains.Comment: 4 pages in RevTex, 3 .eps figures; 2 references added; accepted for publication in Phys.Rev.Let

    Fluxoid dynamics in superconducting thin film rings

    Full text link
    We have measured the dynamics of individual magnetic fluxoids entering and leaving photolithographically patterned thin film rings of the underdoped high-temperature superconductor Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}, using a variable sample temperature scanning SQUID microscope. These results can be qualitatively described using a model in which the fluxoid number changes by thermally activated nucleation of a Pearl vortex in, and transport of the Pearl vortex across, the ring wall.Comment: 9 pages, 10 figures, fixed typo

    Measuring Cosmic Defect Correlations in Liquid Crystals

    Get PDF
    From the theory of topological defect formation proposed for the early universe, the so called Kibble mechanism, it follows that the density correlation functions of defects and anti-defects in a given system should be completely determined in terms of a single length scale ξ\xi, the relevant domain size. Thus, when lengths are expressed in units of ξ\xi, these distributions should show universal behavior, depending only on the symmetry of the order parameter, and space dimensions. We have verified this prediction by analyzing the distributions of defects/anti-defects formed in the isotropic-nematic phase transition in a thin layer of nematic liquid crystals. Our experimental results confirm this prediction and are in reasonable agreement with the results of numerical simulations.Comment: 15 pages, 4 figures, minor changes, few new references adde
    corecore