30 research outputs found

    Two-integral Schwarzschild models

    Get PDF
    We describe a practical method for constructing axisymmetric two-integral galaxy models (with distribution functions of the form f(E,L_z), in which E is the orbital energy, and L_z is the vertical component of the angular momentum), based on Schwarzschild's orbit superposition method. Other f(E,L_z)-methods are mostly based on solving the Jeans equations or on finding the distribution function directly from the density, which often places restrictions on the shape of the galaxy. Here, no assumptions are made and any axisymmetric density distribution is possible. The observables are calculated (semi-)analytically, so that our method is faster than most previous, fully numerical implementations. Various aspects are tested extensively, the results of which apply directly to three-integral Schwarzschild methods. We show that a given distribution function can be reproduced with high accuracy and investigate the behaviour of the parameter that is used to measure the goodness-of-fit. Furthermore, we show that the method correctly identifies the range of cusp clopes for which axisymmetric two-integral models with a central black hole do not exist.Comment: 10 pages, 9 figures, Accepted for publication in MNRA

    The dynamical distance and intrinsic structure of the globular cluster omega Centauri

    Get PDF
    We determine the dynamical distance D, inclination i, mass-to-light ratio M/L and the intrinsic orbital structure of the globular cluster omega Cen, by fitting axisymmetric dynamical models to the ground-based proper motions of van Leeuwen et al. and line-of-sight velocities from four independent data-sets. We correct the observed velocities for perspective rotation caused by the space motion of the cluster, and show that the residual solid-body rotation component in the proper motions can be taken out without any modelling other than assuming axisymmetry. This also provides a tight constraint on D tan i. Application of our axisymmetric implementation of Schwarzschild's orbit superposition method to omega Cen reveals no dynamical evidence for a significant radial dependence of M/L. The best-fit dynamical model has a stellar V-band mass-to-light ratio M/L_V = 2.5 +/- 0.1 M_sun/L_sun and an inclination i = 50 +/- 4 degrees, which corresponds to an average intrinsic axial ratio of 0.78 +/- 0.03. The best-fit dynamical distance D = 4.8 +/- 0.3 kpc (distance modulus 13.75 +/- 0.13 mag) is significantly larger than obtained by means of simple spherical or constant-anisotropy axisymmetric dynamical models, and is consistent with the canonical value 5.0 +/- 0.2 kpc obtained by photometric methods. The total mass of the cluster is (2.5 +/- 0.3) x 10^6 M_sun. The best-fit model is close to isotropic inside a radius of about 10 arcmin and becomes increasingly tangentially anisotropic in the outer region, which displays significant mean rotation. This phase-space structure may well be caused by the effects of the tidal field of the Milky Way. The cluster contains a separate disk-like component in the radial range between 1 and 3 arcmin, contributing about 4% to the total mass.Comment: 37 pages (23 figures), accepted for publication in A&A, abstract abridged, for PS and PDF file with full resolution figures, see http://www.strw.leidenuniv.nl/~vdven/oc

    General solution of the Jeans equations for triaxial galaxies with separable potentials

    Full text link
    The Jeans equations relate the second-order velocity moments to the density and potential of a stellar system. For general three-dimensional stellar systems, there are three equations and six independent moments. By assuming that the potential is triaxial and of separable Staeckel form, the mixed moments vanish in confocal ellipsoidal coordinates. Consequently, the three Jeans equations and three remaining non-vanishing moments form a closed system of three highly-symmetric coupled first-order partial differential equations in three variables. These equations were first derived by Lynden-Bell, over 40 years ago, but have resisted solution by standard methods. We present the general solution here. We consider the two-dimensional limiting cases first. We solve their Jeans equations by a new method which superposes singular solutions. The singular solutions, which are new, are standard Riemann-Green functions. The two-dimensional solutions are applied to non-axisymmetric discs, oblate and prolate spheroids, and also to the scale-free triaxial limit. We then extend the method of singular solutions to the triaxial case, and obtain a full solution. The general solution can be expressed in terms of complete (hyper)elliptic integrals which can be evaluated in a straightforward way, and provides the full set of second moments which can support a triaxial density distribution in a separable triaxial potential. (abridged)Comment: 28 pages (7 figures), LaTeX MN2e, accepted for publication in MNRA

    SAURON Observations of Disks in Spheroids

    Full text link
    The panoramic integral-field spectrograph SAURON is currently being used to map the stellar kinematics, gaseous kinematics, and stellar populations of a large number of early-type galaxies and bulges. Here, we describe SAURON observations of cold stellar disks embedded in spheroids (NGC3384, NGC4459, NGC4526), we illustrate the kinematics and ionization state of large-scale gaseous disks (NGC4278, NGC7742), and we show preliminary comparisons of SAURON data with barred galaxy N-body simulations (NGC3623).Comment: 8 pages including 5 figures. To appear in Galaxies: The Third Dimension, eds. M. Rosado, L. Binnette, & L. Arias (ASP: San Francisco

    SAURON: An Innovative Look at Early-Type Galaxies

    Get PDF
    A summary of the SAURON project and its current status is presented. SAURON is a panoramic integral-field spectrograph designed to study the stellar kinematics, gaseous kinematics, and stellar populations of spheroids. Here, the sample of galaxies and its properties are described. The instrument is detailed and its capabilities illustrated through observational examples. These includes results on the structure of central stellar disks, the kinematics and ionization state of gaseous disks, and the stellar populations of galaxies with decoupled cores.Comment: 10 pages, 6 figures. To appear in "The Dynamics, Structure & History of Galaxies", eds. G. S. Da Costa & E. M. Sadler (San Francisco: ASP). Version with full resolution images available at http://www.strw.leidenuniv.nl/~dynamics/Instruments/Sauron/pub_list.htm

    Dynamical Modeling of SAURON Galaxies

    Full text link
    We describe our program for the dynamical modeling of early-type galaxies observed with the panoramic integral-field spectrograph SAURON. We are using Schwarzschild's numerical orbit superposition method to reproduce in detail all kinematical and photometric observables, and recover the intrinsic orbital structure of the galaxies. Since catastrophes are the most prominent features in the orbital observables, two-dimensional kinematical coverage is essential to constrain the dynamical models.Comment: 5 pages, 4 figures, LaTeX. Published in 2003, Carnegie Observatories Astrophysics Series, Vol. 1: Coevolution of Black Holes and Galaxies, ed. L. C. Ho (Pasadena: Carnegie Observatories, http://www.ociw.edu/ociw/symposia/series/symposium1/proceedings.html

    A SAURON view of galaxies

    Full text link
    We have measured the two-dimensional kinematics and line-strength distributions of 72 representative nearby early-type galaxies, out to approximately one effective radius, with our panoramic integral-field spectrograph SAURON. The resulting maps reveal a rich variety in kinematical structures and linestrength distributions, indicating that early-type galaxies are more complex systems than often assumed. We are building detailed dynamical models for these galaxies, to derive their intrinsic shape and dynamical structure, and to determine the mass of the supermassive central black hole. Here we focus on two examples, the compact elliptical M32 and the E3 galaxy NGC4365. These objects represent two extreme cases: M32 has very regular kinematics which can be represented accurately by an axisymmetric model in which all stars rotate around the short axis, while NGC4365 is a triaxial galaxy with a prominent kinematically decoupled core, with an inner core that rotates about an axis that is nearly perpendicular to the rotation axis of the main body of the galaxy. Our dynamical models for these objects demonstrate that two-dimensional observations are essential for deriving the intrinsic orbital structure and dark matter content of galaxies.Comment: 7 pages (3 figures, full resolution Fig. 1 available at http://www.strw.leidenuniv.nl/~verolme/M32.ps). Contributed talk to the Athens Workshop on Galaxies and Chaos, Theory and Observations; Proceedings to appear in "Galaxies and Chaos", eds. G. Contopoulos and N. Vogli

    SAURON Observations of Disks in Early-Type Galaxies

    Full text link
    We briefly describe the SAURON project, aimed at determining the intrinsic shape and internal dynamics of spheroids. We focus here on the ability of SAURON to identify gaseous and stellar disks and to measure their morphology and kinematics. We illustrate some of our results with complete maps of NGC3377, NGC3623, and NGC4365.Comment: 4 pages, 4 figures (newpasp.sty). To appear in ASP Conf. Series "Galaxy Disks and Disk Galaxies", eds. J.G. Funes S.J. & E.M. Corsini. Version with full resolution images available at http://www.strw.leidenuniv.nl/~bureau/pub_list.htm

    The counterrotating core and the black hole mass of IC1459

    Get PDF
    The E3 giant elliptical galaxy IC1459 is the prototypical galaxy with a fast counterrotating stellar core. We obtained one HST/STIS long-slit spectrum along the major axis of this galaxy and CTIO spectra along five position angles. We present self-consistent three-integral axisymmetric models of the stellar kinematics, obtained with Schwarzschild's numerical orbit superposition method. We study the dynamics of the kinematically decoupled core (KDC) in IC1459 and we find it consists of stars that are well-separated from the rest of the galaxy in phase space. The stars in the KDC counterrotate in a disk on orbits that are close to circular. We estimate that the KDC mass is ~0.5% of the total galaxy mass or ~3*10^9 Msun. We estimate the central black hole mass M_BH of IC1459 independently from both its stellar and its gaseous kinematics. Some complications probably explain why we find rather discrepant BH masses with the different methods. The stellar kinematics suggest that M_BH = (2.6 +/- 1.1)*10^9 Msun (3 sigma error). The gas kinematics suggests that M_BH ~ 3.5*10^8 Msun if the gas is assumed to rotate at the circular velocity in a thin disk. If the observed velocity dispersion of the gas is assumed to be gravitational, then M_BH could be as high as ~1.0*10^9 Msun. These different estimates bracket the value M_BH = (1.1 +/- 0.3)*10^9 Msun predicted by the M_BH-sigma relation. It will be an important goal for future studies to assess the reliability of black hole mass determinations with either technique. This is essential if one wants to interpret the correlation between the BH mass and other global galaxy parameters (e.g. velocity dispersion) and in particular the scatter in these correlations (believed to be only ~0.3 dex). [Abridged]Comment: 51 pages, LaTeX with 19 PostScript figures. Revised version, with three new figures and data tables. To appear in The Astrophysical Journal, 578, 2002 October 2
    corecore