208 research outputs found
Bright soliton trains of trapped Bose-Einstein condensates
We variationally determine the dynamics of bright soliton trains composed of
harmonically trapped Bose-Einstein condensates with attractive interatomic
interactions. In particular, we obtain the interaction potential between two
solitons. We also discuss the formation of soliton trains due to the quantum
mechanical phase fluctuations of a one-dimensional condensate.Comment: 4 pages, 2 figures, submitted to PR
Bright matter wave solitons in Bose-Einstein condensates
We review recent experimental and theoretical work on the creation
of bright matter wave solitons in Bose–Einstein condensates. In two recent experiments,
solitons are formed from Bose–Einstein condensates of 7Li by utilizing
a Feshbach resonance to switch from repulsive to attractive interactions.
The solitons are made to propagate in a one-dimensional potential formed by a
focused laser beam. For repulsive interactions, the wavepacket undergoes dispersivewavepacket
spreading, while for attractive interactions, localized solitons are
formed. In our experiment, a multi-soliton train containing up to ten solitons is
observed to propagate without spreading for a duration of 2 s. Adjacent solitons
are found to interact repulsively, in agreement with a calculation based on the
nonlinear Schr¨odinger equation assuming that the soliton train is formed with an
alternating phase structure. The origin of this phase structure is not entirely clear
Collective excitation of a Bose-Einstein condensate by modulation of the atomic scattering length
We excite the lowest-lying quadrupole mode of a Bose-Einstein condensate by
modulating the atomic scattering length via a Feshbach resonance. Excitation
occurs at various modulation frequencies, and resonances located at the natural
quadrupole frequency of the condensate and at the first harmonic are observed.
We also investigate the amplitude of the excited mode as a function of
modulation depth. Numerical simulations based on a variational calculation
agree with our experimental results and provide insight into the observed
behavior.Comment: Submitted to PR
Quantum incompressibility of a falling Rydberg atom, and a gravitationally-induced charge separation effect in superconducting systems
Freely falling point-like objects converge towards the center of the Earth.
Hence the gravitational field of the Earth is inhomogeneous, and possesses a
tidal component. The free fall of an extended quantum object such as a hydrogen
atom prepared in a high principal-quantum-number stretch state, i.e., a
circular Rydberg atom, is predicted to fall more slowly that a classical
point-like object, when both objects are dropped from the same height from
above the Earth. This indicates that, apart from "quantum jumps," the atom
exhibits a kind of "quantum incompressibility" during free fall in
inhomogeneous, tidal gravitational fields like those of the Earth. A
superconducting ring-like system with a persistent current circulating around
it behaves like the circular Rydberg atom during free fall. Like the electronic
wavefunction of the freely falling atom, the Cooper-pair wavefunction is
"quantum incompressible." The ions of the ionic lattice of the superconductor,
however, are not "quantum incompressible," since they do not possess a globally
coherent quantum phase. The resulting difference during free fall in the
response of the nonlocalizable Cooper pairs of electrons and the localizable
ions to inhomogeneous gravitational fields is predicted to lead to a charge
separation effect, which in turn leads to a large repulsive Coulomb force that
opposes the convergence caused by the tidal, attractive gravitational force on
the superconducting system. A "Cavendish-like" experiment is proposed for
observing the charge separation effect induced by inhomogeneous gravitational
fields in a superconducting circuit. This experiment would demonstrate the
existence of a novel coupling between gravity and electricity via
macroscopically coherent quantum matter.Comment: `2nd Vienna Symposium for the Foundations of Modern Physics'
Festschrift MS for Foundations of Physic
Role of Particle Interactions in the Feshbach Conversion of Fermion Atoms to Bosonic Molecules
We investigate the Feshbach conversion of fermion atomic pairs to condensed
boson molecules with a microscopic model that accounts the repulsive
interactions among all the particles involved. We find that the conversion
efficiency is enhanced by the interaction between boson molecules while
suppressed by the interactions between fermion atoms and between atom and
molecule. In certain cases, the combined effect of these interactions leads to
a ceiling of less than 100% on the conversion efficiency even in the adiabatic
limit. Our model predicts a non-monotonic dependence of the efficiency on mean
atomic density. Our theory agrees well with recent experiments on Li and
K.Comment: 5 pages, 4 figure
Ground states and dynamics of population-imbalanced Fermi condensates in one dimension
By using the numerically exact density-matrix renormalization group (DMRG)
approach, we investigate the ground states of harmonically trapped
one-dimensional (1D) fermions with population imbalance and find that the
Larkin-Ovchinnikov (LO) state, which is a condensed state of fermion pairs with
nonzero center-of-mass momentum, is realized for a wide range of parameters.
The phase diagram comprising the two phases of i) an LO state at the trap
center and a balanced condensate at the periphery and ii) an LO state at the
trap center and a pure majority component at the periphery, is obtained. The
reduced two-body density matrix indicates that most of the minority atoms
contribute to the LO-type quasi-condensate. With the time-dependent DMRG, we
also investigate the real-time dynamics of a system of 1D fermions in response
to a spin-flip excitation.Comment: 20 pages, 15 figures, accepted for publication in New Journal of
Physic
Recommended from our members
Separation of trivalent lanthanides and actinides by solvent extraction without aqueous complexing agents
A method of separating the trivalent actinides, mainly Am and Cm, from trivalent lanthanides is presented. This method embodies the sequential use of two different solvent extractants; the first extractant would remove the heavy lanthanides from the lighter lanthanides and Am--Cm, while the second would extract Am--Cm in preference to the lighter lanthanides. In this scheme, no additional complexing agents are required. Thus, waste disposal and corrosion problems are minimized. Overall separation factors for Am--Cm from lanthanide fission products in reactor wastes may be as high as several thousand. (auth
Elastic and inelastic collisions of 6Li in magnetic and optical traps
We use a full coupled channels method to calculate collisional properties of
magnetically or optically trapped ultracold 6Li. The magnetic field dependence
of the s-wave scattering lengths of several mixtures of hyperfine states are
determined, as are the decay rates due to exchange collisions. In one case, we
find Feshbach resonances at B=0.08 T and B=1.98 T. We show that the exact
coupled channels calculation is well approximated over the entire range of
magnetic fields by a simple analytical calculation.Comment: 4 pages revtex including 4 figures, submitted to PR
Spontaneous emission between an unusual pair of plates
We compute the modification in the spontaneous emission rate for a two-level
atom when it is located between two parallel plates of different nature: a
perfectly conducting plate and an infinitely permeable
one . We also discuss the case of two infinitely permeable
plates. We compare our results with those found in the literature for the case
of two perfectly conducting plates.Comment: latex file 4 pages, 4 figure
Formation and Propagation of Matter Wave Soliton Trains
Attraction between atoms in a Bose-Einstein-Condensate renders the condensate
unstable to collapse. Confinement in an atom trap, however, can stabilize the
condensate for a limited number of atoms, as was observed with 7Li, but beyond
this number, the condensate collapses. Attractive condensates constrained to
one-dimensional motion are predicted to form stable solitons for which the
attractive interactions exactly compensate for the wave packet dispersion. Here
we report the formation or bright solitons of 7Li atoms created in a quasi-1D
optical trap. The solitons are created from a stable Bose-Einstein condensate
by magnetically tuning the interactions from repulsive to attractive. We
observe a soliton train, containing many solitons. The solitons are set in
motion by offsetting the optical potential and are observed to propagate in the
potential for many oscillatory cycles without spreading. Repulsive interactions
between neighboring solitons are inferred from their motion
- …