18,248 research outputs found
Photoelectric polarimetry of the tail of comet Ikey-Seki (1975 VIII)
Post-perihelion measurements of Comet 1965 VIII made on four nights in October-November 1965 using a Fabry photometer atop 3,052 m Mt. Haleakala, Hawaii are described. Detailed results of observations at 5300A on October 29, 1965 are presented
Six-dimensional Methods for Four-dimensional Conformal Field Theories
The calculation of both spinor and tensor Green's functions in
four-dimensional conformally invariant field theories can be greatly simplified
by six-dimensional methods. For this purpose, four-dimensional fields are
constructed as projections of fields on the hypercone in six-dimensional
projective space, satisfying certain transversality conditions. In this way
some Green's functions in conformal field theories are shown to have structures
more general than those commonly found by use of the inversion operator. These
methods fit in well with the assumption of AdS/CFT duality. In particular, it
is transparent that if fields on AdS approach finite limits on the boundary
of AdS, then in the conformal field theory on this boundary these limits
transform with conformal dimensionality zero if they are tensors (of any rank),
but with conformal dimension 1/2 if they are spinors or spinor-tensors.Comment: Version accepted for publication in Physical Review D. References to
earlier work added in footnote 2. Minor errors corrected. 24 page
Effective Field Theory for the Quantum Electrodynamics of a Graphene Wire
We study the low-energy quantum electrodynamics of electrons and holes, in a
thin graphene wire. We develop an effective field theory (EFT) based on an
expansion in p/p_T, where p_T is the typical momentum of electrons and holes in
the transverse direction, while p are the momenta in the longitudinal
direction. We show that, to the lowest-order in (p/p_T), our EFT theory is
formally equivalent to the exactly solvable Schwinger model. By exploiting such
an analogy, we find that the ground state of the quantum wire contains a
condensate of electron-hole pairs. The excitation spectrum is saturated by
electron-hole collective bound-states, and we calculate the dispersion law of
such modes. We also compute the DC conductivity per unit length at zero
chemical potential and find g_s =e^2/h, where g_s=4 is the degeneracy factor.Comment: 7 pages, 2 figures. Definitive version, accepted for publication on
Phys. Rev.
On Local Dilatation Invariance
The relationship between local Weyl scaling invariant models and local
dilatation invariant actions is critically scrutinized. While actions invariant
under local Weyl scalings can be constructed in a straightforward manner,
actions invariant under local dilatation transformations can only be achieved
in a very restrictive case. The invariant couplings of matter fields to an
Abelian vector field carrying a non-trivial scaling weight can be easily built,
but an invariant Abelian vector kinetic term can only be realized when the
local scale symmetry is spontaneously broken.Comment: 3 page
Direct measurement of xenon flashtube opacity
Opacity measurement of xenon flash tube - optical mase
Intrinsic-Density Functionals
The Hohenberg-Kohn theorem and Kohn-Sham procedure are extended to
functionals of the localized intrinsic density of a self-bound system such as a
nucleus. After defining the intrinsic-density functional, we modify the usual
Kohn-Sham procedure slightly to evaluate the mean-field approximation to the
functional, and carefully describe the construction of the leading corrections
for a system of fermions in one dimension with a spin-degeneracy equal to the
number of particles N. Despite the fact that the corrections are complicated
and nonlocal, we are able to construct a local Skyrme-like intrinsic-density
functional that, while different from the exact functional, shares with it a
minimum value equal to the exact ground-state energy at the exact ground-state
intrinsic density, to next-to-leading order in 1/N. We briefly discuss
implications for real Skyrme functionals.Comment: 15 page
Four Fermion Processes at Future Colliders as a Probe of New Resonant Structures
Possible oblique effects from vector particles that are strongly coupled to
the known gauge bosons are calculated for the case of final hadronic states
produced at future colliders, using a formalism that was recently
proposed and that exploits the information and the constraints provided by LEP
1 results. Combining the hadronic channels with the previously analysed
leptonic ones we derive improved limits for the masses of the resonances
that,in technicolour-like cases, would range from one to two TeV for a 500 GeV
linear collider, depending on the assumed theoretical constraints.Comment: 11 pages, postscript file of 3 figures appended at the end of the
latex file PM/93-34 UTS-DFT-93-2
Future supernovae data and quintessence models
The possibility to unambiguously determine the equation-of-state of the
cosmic dark energy with existing and future supernovae data is investigated. We
consider four evolution laws for this equation-of-state corresponding to four
quintessential models, i.e. i) a cosmological constant, ii) a general
barotropic fluid, iii) a perfect fluid with a linear equation-of-state and iv)
a more physical model based on a pseudo-Nambu-Goldstone boson field. We
explicitly show the degeneracies present not only within each model but also
between the different models : they are caused by the multi-integral relation
between the equation-of-state of dark energy and the luminosity distance.
Present supernova observations are analysed using a standard method
and the minimal values obtained for each model are compared. We
confirm the difficulty to discriminate between these models using present SNeIa
data only. By means of simulations, we then show that future SNAP observations
will not remove all the degeneracies. For example, wrong estimations of
with a good value of could be found if the right
cosmological model is not used to fit the data. We finally give some
probabilities to obtain unambiguous results, free from degeneracies. In
particular, the probability to confuse a cosmological constant with a true
barotropic fluid with an equation-of-state different from -1 is shown to be 95%
at a level.Comment: 12 pages. This improved version has been accepted for publication in
M.N.R.A.
Vacuum decay and internal symmetries
We study the effects of internal symmetries on the decay by bubble nucleation
of a metastable false vacuum. The zero modes about the bounce solution that are
associated with the breaking of continuous internal symmetries result in an
enhancement of the tunneling rate into vacua in which some of the symmetries of
the initial state are spontaneously broken. We develop a general formalism for
evaluating the effects of these zero modes on the bubble nucleation rate in
both flat and curved space-times.Comment: LaTex, 11 pages, No figures, one minor chang
- …