1,268 research outputs found
Exact diagonalization study of the two-dimensional t-J-Holstein model
We study by exact diagonalization the two-dimensional t-J-Holstein model near
quarter filling by retaining only few phonon modes in momentum space. This
truncation allows us to incorporate the full dynamics of the retained phonon
modes. The behavior of the kinetic energy, the charge structure factor and
other physical quantities, show the presence of a transition from a delocalized
phase to a localized phase at a finite value of the electron-phonon coupling.
We have also given some indications that the e-ph coupling leads in general to
a suppression of the pairing susceptibility at quarter filling.Comment: 11 pages, Revtex v. 2.0, 4 figures available from author
Possible high superconductivity mediated by antiferromagnetic spin fluctuations in systems with Fermi surface pockets
We propose that if there are two small pocket-like Fermi surfaces, and the
spin susceptibility is pronounced around a wave vector {\bf Q} that bridges the
two pockets, the spin-singlet superconductivity mediated by spin fluctuations
may have a high transition temperature. Using the fluctuation exchange
approximation, this idea is confirmed for the Hubbard on a lattice with
alternating hopping integrals, for which is estimated to be almost an
order of magnitude larger than those for systems with a large connected Fermi
surface.Comment: 5 pages, uses RevTe
On the metal-insulator transition in the two-chain model of correlated fermions
The doping-induced metal-insulator transition in two-chain systems of
correlated fermions is studied using a solvable limit of the t-J model and the
fact that various strong- and weak-coupling limits of the two-chain model are
in the same phase, i.e. have the same low-energy properties. It is shown that
the Luttinger-liquid parameter K_\rho takes the universal value unity as the
insulating state (half-filling) is approached, implying dominant d-type
superconducting fluctuations, independently of the interaction strength. The
crossover to insulating behavior of correlations as the transition is
approached is discussed.Comment: 7 pages, 1 figur
Conductivity of Doped Two-Leg Ladders
Recently, conductivity measurements were performed on the hole-doped two-leg
ladder material Sr_{14-x}Ca_xCu_{24}O_{41}. In this work, we calculate the
conductivity for doped two-leg ladders using a model of hole-pairs forming a
strongly correlated liquid - a single component Luttinger liquid - in the
presence of disorder. Quantum interference effects are handled using
renormalization group methods. We find that our model can account for the low
energy features of the experimental results. However, at higher energies the
experiments show deviations from the predictions of this model. Using the
results of our calculations as well as results on the ground state of doped
two-leg ladders, we suggest a scenario to account for the higher energy
features of the experimental results.Comment: 5 pages, 3 postscript figure
Dynamical Properties of Two Coupled Hubbard Chains at Half-filling
Using grand canonical Quantum Monte Carlo (QMC) simulations combined with
Maximum Entropy analytic continuation, as well as analytical methods, we
examine the one- and two-particle dynamical properties of the Hubbard model on
two coupled chains at half-filling. The one-particle spectral weight function,
, undergoes a qualitative change with interchain hopping
associated with a transition from a four-band insulator to a two-band
insulator. A simple analytical model based on the propagation of exact rung
singlet states gives a good description of the features at large . For
smaller , is similar to that of the
one-dimensional model, with a coherent band of width the effective
antiferromagnetic exchange reasonably well-described by renormalized
spin-wave theory. The coherent band rides on a broad background of width
several times the parallel hopping integral , an incoherent structure
similar to that found in calculations on both the one- and two-dimensional
models. We also present QMC results for the two-particle spin and charge
excitation spectra, and relate their behavior to the rung singlet picture for
large and to the results of spin-wave theory for small .Comment: 9 pages + 10 postscript figures, submitted to Phys.Rev.B, revised
version with isotropic t_perp=t data include
Enhanced Bound State Formation in Two Dimensions via Stripe-Like Hopping Anisotropies
We have investigated two-electron bound state formation in a square
two-dimensional t-J-U model with hopping anisotropies for zero electron
density; these anisotropies are introduced to mimic the hopping energies
similar to those expected in stripe-like arrangements of holes and spins found
in various transition metal oxides. In this report we provide analytical
solutions to this problem, and thus demonstrate that bound-state formation
occurs at a critical exchange coupling, J_c, that decreases to zero in the
limit of extreme hopping anisotropy t_y/t_x -> 0. This result should be
contrasted with J_c/t = 2 for either a one-dimensional chain, or a
two-dimensional plane with isotropic hopping. Most importantly, this behaviour
is found to be qualitatively similar to that of two electrons on the two-leg
ladder problem in the limit of t_interchain/t_intrachain -> 0. Using the latter
result as guidance, we have evaluated the pair correlation function, thus
determining that the bound state corresponds to one electron moving along one
chain, with the second electron moving along the opposite chain, similar to two
electrons confined to move along parallel, neighbouring, metallic stripes. We
emphasize that the above results are not restricted to the zero density limit -
we have completed an exact diagonalization study of two holes in a 12 X 2
two-leg ladder described by the t-J model and have found that the
above-mentioned lowering of the binding energy with hopping anisotropy persists
near half filling.Comment: 6 pages, 3 eps figure
Numerical study of a superconductor-insulator transition in a half-filled Hubbard chain with distant transfers
The ground state of a one-dimensional Hubbard model having the next-nearest
neighbor hopping (t') as well as the nearest-neighbor one (t) is numerically
investigated at half-filling. A quantum Monte Carlo result shows a slowly
decaying pairing correlation for a sizeable interaction strength ,
while the system is shown to become insulating for yet larger
from a direct evaluation of the charge gap with the density-matrix
renormalization group method. The results are consistent with Fabrizio's recent
weak-coupling theory which suggests a transition from a superconductor into an
insulator at a finite U.Comment: 4 pages, RevTeX, uses epsf.sty and multicol.st
Quasi-equilibrium states in thermotropic liquid crystals studied by multiple quantum NMR
We study the nature of the quasiinvariants in nematic 5CB and measure their
relaxation times by encoding the multiple quantum coherences of the states
following the JB pulse pair on two orthogonal bases, Z and X. The experiments
were also performed in powder adamantane at 301 K which is used as a reference
compound having only one dipolar quasiinvariant. We show that the evolution of
the quantum states during the build up of the quasi-equilibrium state in 5CB
prepared under the S condition is similar to the case of adamantane and that
their quasi-equilibrium density operators have the same tensor structure. In
contrast, the second constant of motion, whose explicit operator form is not
known, involves a richer composition of multiple quantum coherences on the X
basis of even order, in consistency with the truncation inherent in its
definition. We exploited the exclusive presence coherences 4, 6, 8, besides 0
and 2 under the W condition to measure the spin-lattice relaxation time T_{W}
accurately, so avoiding experimental difficulties that usually impair dipolar
order relaxation measurement such as Zeeman contamination at high fields, and
also superposition of the different quasiinvariants. This procedure opens the
possibility of measuring the spin-lattice relaxation of a quasiinvariant
independent of the Zeeman and S reservoirs, so incorporating a new relaxation
parameter useful for studying the complex molecular dynamics in mesophases. In
fact, we report the first measurement of T_{W} in a liquid crystal at high
magnetic fields. The comparison of the obtained value with the one
corresponding to a lower field (16 MHz) points out that the relaxation of the
W-order strongly depends on the intensity of the external magnetic field,
similarly to the case of the S reservoir, indicating that the relaxation of the
W-quasiinvariant is also governed by the cooperative molecular motions.Comment: 7 figures. http://www.famaf.unc.edu.ar/series/AFis2005.ht
Pairing Correlations on t-U-J Ladders
Pairing correlations on generalized t-U-J two-leg ladders are reported. We
find that the pairing correlations on the usual t-U Hubbard ladder are
significantly enhanced by the addition of a nearest-neighbor exchange
interaction J. Likewise, these correlations are also enhanced for the t-J model
when the onsite Coulomb interaction is reduced from infinity. Moreover, the
pairing correlations are larger on a t-U-J ladder than on a t-Jeff ladder in
which Jeff has been adjusted so that the two models have the same spin gap at
half-filling. This enhancement of the pairing correlations is associated with
an increase in the pair-binding energy and the pair mobility in the t-U-J model
and point to the importance of the charge transfer nature of the cuprate
systems
Phase diagram of the two-chain Hubbard model
We have calculated the charge gap and spin gap for the two-chain Hubbard
model as a function of the on-site Coulomb interaction and the interchain
hopping amplitude. We used the density matrix renormalization group method and
developed a method to calculate separately the gaps numerically for the
symmetric and antisymmetric modes with respect to the exchange of the chain
indices. We have found very different behaviors for the weak and strong
interaction cases. Our calculated phase diagram is compared to the one obtained
by Balents and Fisher using the weak coupling renormalization group technique.Comment: 4 pages, 6 figures, to appear in PR
- …