94 research outputs found

    Determining and interpreting correlations in lipidomic networks found in glioblastoma cells

    Get PDF
    Background: Intelligent and multitiered quantitative analysis of biological systems rapidly evolves to a key technique in studying biomolecular cancer aspects. Newly emerging advances in both measurement as well as bio-inspired computational techniques have facilitated the development of lipidomics technologies and offer an excellent opportunity to understand regulation at the molecular level in many diseases. Results: We present computational approaches to study the response of glioblastoma U87 cells to gene- and chemo-therapy. To identify distinct biomarkers and differences in therapeutic outcomes, we develop a novel technique based on graph-clustering. This technique facilitates the exploration and visualization of co-regulations in glioblastoma lipid profiling data. We investigate the changes in the correlation networks for different therapies and study the success of novel gene therapies targeting aggressive glioblastoma. Conclusions: The novel computational paradigm provides unique “fingerprints” by revealing the intricate interactions at the lipidome level in glioblastoma U87 cells with induced apoptosis (programmed cell death) and thus opens a new window to biomedical frontiers. Background Glioblastoma are highly invasive brain tumors. Th

    Late Endosomal Cholesterol Accumulation Leads to Impaired Intra-Endosomal Trafficking

    Get PDF
    Background Pathological accumulation of cholesterol in late endosomes is observed in lysosomal storage diseases such as Niemann-Pick type C. We here analyzed the effects of cholesterol accumulation in NPC cells, or as phenocopied by the drug U18666A, on late endosomes membrane organization and dynamics. Methodology/Principal Findings Cholesterol accumulation did not lead to an increase in the raft to non-raft membrane ratio as anticipated. Strikingly, we observed a 2–3 fold increase in the size of the compartment. Most importantly, properties and dynamics of late endosomal intralumenal vesicles were altered as revealed by reduced late endosomal vacuolation induced by the mutant pore-forming toxin ASSP, reduced intoxication by the anthrax lethal toxin and inhibition of infection by the Vesicular Stomatitis Virus. Conclusions/Significance These results suggest that back fusion of intralumenal vesicles with the limiting membrane of late endosomes is dramatically perturbed upon cholesterol accumulation

    Cystatin C Deficiency Promotes Epidermal Dysplasia in K14-HPV16 Transgenic Mice

    Get PDF
    Cysteine protease cathepsins are important in extracellular matrix protein degradation, cell apoptosis, and angiogenesis. Mice lacking cathepsins are protected from tumor progression in several animal models, suggesting that the regulation of cathepsin activities controls the growth of various malignant tumors.We tested the role of cathepsins using a mouse model of multistage epithelial carcinogenesis, in which the human keratin-14 promoter/enhancer drove the expression of human papillomavirus type 16 (HPV16) early region E6/E7 transgenes. During the progression of premalignant dysplasia, we observed increased expression of cysteine protease cathepsin S, but concomitantly reduced expression of cathepsin endogenous inhibitor cystatin C in the skin tissue extract. Absence of cystatin C in these transgenic mice resulted in more progression of dysplasia to carcinoma in situ on the face, ear, chest, and tail. Chest and ear skin extract real time PCR and immunoblot analysis, mouse serum sample ELISA, tissue immunohistological analysis, and tissue extract-mediated in vitro elastinolysis and collagenolysis assays demonstrated that cystatin C deficiency significantly increased cathepsin expression and activity. In skin from both the chest and ear, we found that the absence of cystatin C reduced epithelial cell apoptosis but increased proliferation. From the same tissue preparations, we detected significantly higher levels of pro-angiogenic laminin 5-derived γ2 peptides and concurrently increased neovascularization in cystatin C-deficient mice, compared to those from wild-type control mice.Enhanced cathepsin expression and activity in cystatin C-deficient mice contributed to the progression of dysplasia by altering premalignant tissue epithelial proliferation, apoptosis, and neovascularization

    Full-Length L1CAM and Not Its Δ2Δ27 Splice Variant Promotes Metastasis through Induction of Gelatinase Expression

    Get PDF
    Tumour-specific splicing is known to contribute to cancer progression. In the case of the L1 cell adhesion molecule (L1CAM), which is expressed in many human tumours and often linked to bad prognosis, alternative splicing results in a full-length form (FL-L1CAM) and a splice variant lacking exons 2 and 27 (SV-L1CAM). It has not been elucidated so far whether SV-L1CAM, classically considered as tumour-associated, or whether FL-L1CAM is the metastasis-promoting isoform. Here, we show that both variants were expressed in human ovarian carcinoma and that exposure of tumour cells to pro-metastatic factors led to an exclusive increase of FL-L1CAM expression. Selective overexpression of one isoform in different tumour cells revealed that only FL-L1CAM promoted experimental lung and/or liver metastasis in mice. In addition, metastasis formation upon up-regulation of FL-L1CAM correlated with increased invasive potential and elevated Matrix metalloproteinase (MMP)-2 and -9 expression and activity in vitro as well as enhanced gelatinolytic activity in vivo. In conclusion, we identified FL-L1CAM as the metastasis-promoting isoform, thereby exemplifying that high expression of a so-called tumour-associated variant, here SV-L1CAM, is not per se equivalent to a decisive role of this isoform in tumour progression

    Autophagy: Regulation and role in disease

    Full text link

    Hepatic stellate cells:central modulators of hepatic carcinogenesis

    Get PDF
    Hepatocellular carcinoma (HCC) represents the second most common cause of cancer-related death worldwide, and is increasing in incidence. Currently, our therapeutic repertoire for the treatment of HCC is severely limited, and therefore effective new therapies are urgently required. Recently, there has been increasing interest focusing on the cellular and molecular interactions between cancer cells and their microenvironment. HCC represents a unique opportunity to study the relationship between a diseased stroma and promotion of carcinogenesis, as 90 % of HCCs arise in a cirrhotic liver. Hepatic stellate cells (HSC) are the major source of extracellular proteins during fibrogenesis, and may directly, or via secreted products, contribute to tumour initiation and progression. In this review we explore the complex cellular and molecular interplay between HSC biology and hepatocarcinogenesis. We focus on the molecular mechanisms by which HSC modulate HCC growth, immune cell evasion and angiogenesis. This is followed by a discussion of recent progress in the field in understanding the mechanistic crosstalk between HSC and HCC, and the pathways that are potentially amenable to therapeutic intervention. Furthermore, we summarise the exciting recent developments in strategies to target HSC specifically, and novel techniques to deliver pharmaceutical agents directly to HSC, potentially allowing tailored, cell-specific therapy for HCC

    SheddomeDB: the ectodomain shedding database for membrane-bound shed markers

    Full text link
    corecore