74 research outputs found

    The Herpesvirus Associated Ubiquitin Specific Protease, USP7, Is a Negative Regulator of PML Proteins and PML Nuclear Bodies

    Get PDF
    The PML tumor suppressor is the founding component of the multiprotein nuclear structures known as PML nuclear bodies (PML-NBs), which control several cellular functions including apoptosis and antiviral effects. The ubiquitin specific protease USP7 (also called HAUSP) is known to associate with PML-NBs and to be a tight binding partner of two herpesvirus proteins that disrupt PML NBs. Here we investigated whether USP7 itself regulates PML-NBs. Silencing of USP7 was found to increase the number of PML-NBs, to increase the levels of PML protein and to inhibit PML polyubiquitylation in nasopharyngeal carcinoma cells. This effect of USP7 was independent of p53 as PML loss was observed in p53-null cells. PML-NBs disruption was induced by USP7 overexpression independently of its catalytic activity and was induced by either of the protein interaction domains of USP7, each of which localized to PML-NBs. USP7 also disrupted NBs formed from some single PML isoforms, most notably isoforms I and IV. CK2α and RNF4, which are known regulators of PML, were dispensable for USP7-associated PML-NB disruption. The results are consistent with a novel model of PML regulation where a deubiquitylase disrupts PML-NBs through recruitment of another cellular protein(s) to PML NBs, independently of its catalytic activity

    Estimating the long-term impact of a prophylactic human papillomavirus 16/18 vaccine on the burden of cervical cancer in the UK

    Get PDF
    To predict the public health impact on cervical disease by introducing human papillomavirus (HPV) vaccination in the United Kingdom, we developed a mathematical model that can be used to reflect the impact of vaccination in different countries with existing screening programmes. Its use is discussed in the context of the United Kingdom. The model was calibrated with published data. The impact of vaccination on cervical cancer and deaths, precancerous lesions and screening outcomes were estimated for a vaccinated cohort of 12-year-old girls, among which it is estimated that there would be a reduction of 66% in the prevalence of high-grade precancerous lesions and a 76% reduction in cervical cancer deaths. Estimates for various other measures of the population effects of vaccination are also presented. We concluded that it is feasible to forecast the potential effects of HPV vaccination in the context of an existing national screening programme. Results suggest a sizable reduction in the incidence of cervical cancer and related deaths. Areas for future research include investigation of the beneficial effects of HPV vaccination on infection transmission and epidemic dynamics, as well as HPV-related neoplasms in other sites

    Characterisation of the Trichinella spiralis deubiquitinating enzyme, TsUCH37, an evolutionarily conserved proteasome interaction partner.

    Get PDF
    Trichinella spiralis is a parasitic nematode that infects mammals indiscriminately. Although the biggest impact of trichinellosis is observed in developing countries, the parasite is found on all continents except Antarctica. In humans, Trichinella infection contributes globally to helminth related morbidity and disability adjusted life years. In animals, infection is implicated as a serious agricultural problem and drug treatment is largely ineffective. During chronic infection, larvae invade skeletal muscle cells, forming a nurse cell complex in which they become encysted. The nurse cell is a product of the severe disruption of the host cell homeostasis. Proteins of the Ub/proteasome pathway are highly conserved throughout evolution, and considering their importance in the regulation of cell homeostasis, provide interesting and novel therapeutic targets for various diseases. In order to target this system in parasites, pathogen proteins that play a role in this pathway must be identified. We report the identification of the first T. spiralis deubiquitinating enzyme, and show evidence that the function of this protein as a proteasome interaction partner has been evolutionarily conserved. We show that members of this enzyme family are important for T. spiralis survival and that the use of inhibitor compounds may help elucidate their role in infection

    Analysis of genetic copy number changes in cervical disease progression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cervical dysplasia and tumorigenesis have been linked with numerous chromosomal aberrations. The goal of this study was to evaluate 35 genomic regions associated with cervical disease and to select those which were found to have the highest frequency of aberration for use as probes in fluorescent in-situ hybridization.</p> <p>Methods</p> <p>The frequency of gains and losses using fluorescence in-situ hybridization were assessed in these 35 regions on 30 paraffin-embedded cervical biopsy specimens. Based on this assessment, 6 candidate fluorescently labeled probes (8q24, Xp22, 20q13, 3p14, 3q26, CEP15) were selected for additional testing on a set of 106 cervical biopsy specimens diagnosed as Normal, CIN1, CIN2, CIN3, and SCC. The data were analyzed on the basis of signal mean, % change of signal mean between histological categories, and % positivity.</p> <p>Results</p> <p>The study revealed that the chromosomal regions with the highest frequency of copy number gains and highest combined sensitivity and specificity in high-grade cervical disease were 8q24 and 3q26. The cytological application of these two probes was then evaluated on 118 ThinPrep™ samples diagnosed as Normal, ASCUS, LSIL, HSIL and Cancer to determine utility as a tool for less invasive screening. Using gains of either 8q24 or 3q26 as a positivity criterion yielded specificity (Normal +LSIL+ASCUS) of 81.0% and sensitivity (HSIL+Cancer) of 92.3% based on a threshold of 4 positive cells.</p> <p>Conclusions</p> <p>The application of a FISH assay comprised of chromosomal probes 8q24 and 3q26 to cervical cytology specimens confirms the positive correlation between increasing dysplasia and copy gains and shows promise as a marker in cervical disease progression.</p

    Methodologies used to estimate tobacco-attributable mortality: a review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the most important measures for ascertaining the impact of tobacco on a population is the estimation of the mortality attributable to its use. To measure this, a number of indirect methods of quantification are available, yet there is no consensus as to which furnishes the best information. This study sought to provide a critical overview of the different methods of attribution of mortality due to tobacco consumption.</p> <p>Method</p> <p>A search was made in the Medline database until March 2005 in order to obtain papers that addressed the methodology employed for attributing mortality to tobacco use.</p> <p>Results</p> <p>Of the total of 7 methods obtained, the most widely used were the prevalence methods, followed by the approach proposed by Peto et al, with the remainder being used in a minority of studies.</p> <p>Conclusion</p> <p>Different methodologies are used to estimate tobacco attributable mortality, but their methodological foundations are quite similar in all. Mainly, they are based on the calculation of proportional attributable fractions. All methods show limitations of one type or another, sometimes common to all methods and sometimes specific.</p

    Expression of Mir-21 and Mir-143 in Cervical Specimens Ranging from Histologically Normal through to Invasive Cervical Cancer

    Get PDF
    MicroRNA expression is severely disrupted in carcinogenesis, however limited evidence is available validating results from cell-line models in human clinical cancer specimens. MicroRNA-21 (mir-21) and microRNA-143 (mir-143) have previously been identified as significantly deregulated in a range of cancers including cervical cancer. Our goal was to investigate the expression patterns of several well-studied microRNA species in cervical samples and compare the results to cell line samples.We measured the expression of mir-21 and mir-143 in 142 formalin-fixed, paraffin embedded (FFPE) cervical biopsy tissue blocks, collected from Dantec Oncology Clinic, Dakar, Senegal. MicroRNA expression analysis was performed using Taqman-based real-time PCR assays. Protein immunohistochemical staining was also performed to investigate target protein expression on 72 samples. We found that mir-21 expression increased with worsening clinical diagnosis but that mir-143 was not correlated with histology. These observations were in stark contrast to previous reports involving cervical cancer cell lines in which mir-143 was consistently down-regulated but mir-21 largely unaffected. We also identified, for the first time, that cytoplasmic expression of Programmed Cell Death Protein 4 PDCD4; a known target of mir-21) was significantly lower in women with invasive cervical carcinoma (ICC) in comparison to those with cervical intraepithelial neoplasia (2-3) or carcinoma in situ (CIN2-3/CIS), although there was no significant correlation between mir-21 and PDCD4 expression, despite previous studies identifying PDCD4 transcript as a known mir-21 target.Whilst microRNA biomarkers have a number of promising features, more studies on expression levels in histologically defined clinical specimens are required to investigate clinical relevance of discovery-based studies. Mir-21 may be of some utility in predictive screening, given that we observed a significant correlation between mir-21 expression level and worsening histological diagnosis of cervical cancer

    Apoptosis induction in Jurkat cells and sCD95 levels in women's sera are related with the risk of developing cervical cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Currently, there is clear evidence that apoptosis plays an important role in the development and progression of tumors. One of the best characterized apoptosis triggering systems is the CD95/Fas/APO-1 pathway; previous reports have demonstrated high levels of soluble CD95 (sCD95) in serum of patients with some types of cancer. Cervical cancer is the second most common cancer among women worldwide. As a first step in an attempt to design a minimally invasive test to predict the risk of developing cervical cancer in patients with precancerous lesions, we used a simple assay based on the capacity of human serum to induce apoptosis in Jurkat cells. We evaluated the relationship between sCD95 levels and the ability to induce apoptosis in Jurkat cells in cervical cancer patients and controls.</p> <p>Methods</p> <p>Jurkat cells were exposed to serum from 63 women (20 healthy volunteers, 21 with cervical intraepithelial neoplasia grade I [CIN 1] and 22 with cervical-uterine carcinoma). The apoptotic rate was measured by flow cytometry using Annexin-V-Fluos and Propidium Iodide as markers. Serum levels of sCD95 and soluble CD95 ligand (sCD95L) were measured by ELISA kits.</p> <p>Results</p> <p>We found that serum from almost all healthy women induced apoptosis in Jurkat cells, while only fifty percent of the sera from women with CIN 1 induced cell death in Jurkat cells. Interestingly, only one serum sample from a patient with cervical-uterine cancer was able to induce apoptosis, the rest of the sera protected Jurkat cells from this killing. We were able to demonstrate that elimination of Jurkat cells was mediated by the CD95/Fas/Apo-1 apoptotic pathway. Furthermore, the serum levels of sCD95 measured by ELISA were significantly higher in women with cervical cancer.</p> <p>Conclusion</p> <p>Our results demonstrate that there is a strong correlation between low levels of sCD95 in serum of normal women and higher apoptosis induction in Jurkat cells. We suggest that an analysis of the apoptotic rate induced by serum in Jurkat cells and the levels of sCD95 in serum could be helpful during the prognosis and treatment of women detected with precancerous lesions or cervical cancer.</p

    PTMs in Conversation: Activity and Function of Deubiquitinating Enzymes Regulated via Post-Translational Modifications

    Get PDF
    Deubiquitinating enzymes (DUBs) constitute a diverse protein family and their impact on numerous biological and pathological processes has now been widely appreciated. Many DUB functions have to be tightly controlled within the cell, and this can be achieved in several ways, such as substrate-induced conformational changes, binding to adaptor proteins, proteolytic cleavage, and post-translational modifications (PTMs). This review is focused on the role of PTMs including monoubiquitination, sumoylation, acetylation, and phosphorylation as characterized and putative regulative factors of DUB function. Although this aspect of DUB functionality has not been yet thoroughly studied, PTMs represent a versatile and reversible method of controlling the role of DUBs in biological processes. In several cases PTMs might constitute a feedback mechanism insuring proper functioning of the ubiquitin proteasome system and other DUB-related pathways
    corecore