34 research outputs found

    Physical Activity, Weight, and Waist Circumference in Midlife Women

    No full text
    During midlife years, women are at risk of increasing body weight and waist circumference. We evaluated changes in weight and waist circumference from enrollment to 2 years later and examined the influence of physical activity level on those changes among 232 women aged between 40-50. Weight increased significantly for the entire sample. Those who increased their physical activity from enrollment to 2 years later had the smallest increase in weight and had a slight decrease in waist circumference. To maintain ideal weight and waist circumference, midlife women should be encouraged to increase physical activity before and during the menopausal transition

    A new search for primordial black hole evaporations using the whipple gamma-ray telescope

    No full text
    Stephen Hawking\u27s prediction that black holes should radiate like black bodies has several important consequences, including the possibility of the detection of small (similar to 10(15) g) black holes created in the very early universe. The detection of such primordial black holes ( PBHs) would be an important discovery, not only confirming Hawking\u27s theory, but also providing valuable insights into the history of the early universe. A search through 5.5 years of archival data from the Whipple Atmospheric Cerenkov Telescope is made for TeV gamma-ray bursts on 1, 3, and 5 s timescales. On the basis of a null result from this direct search for PBH evaporations, an upper limit of 1.08 x 10(6) pc(-3) yr(-1) (99% CL) is set on the PBH evaporation rate in the local region of the galaxy, assuming the Standard Model of particle physics. This is more than a factor of two better than the previous limit at this energy range and includes longer timescales than have previously been explored. Comparison of this result with previous limits on the fraction of the critical density comprised by PBHs, Omega(pbh), depends strongly on assumptions made about PBH clustering; in models predicting strong PBH clustering, the limit in this work could be as many as ten orders of magnitude more stringently than those set by diffuse MeV gamma-ray observations

    A new search for primordial black hole evaporations using the whipple gamma-ray telescope

    No full text
    Stephen Hawking\u27s prediction that black holes should radiate like black bodies has several important consequences, including the possibility of the detection of small (similar to 10(15) g) black holes created in the very early universe. The detection of such primordial black holes ( PBHs) would be an important discovery, not only confirming Hawking\u27s theory, but also providing valuable insights into the history of the early universe. A search through 5.5 years of archival data from the Whipple Atmospheric Cerenkov Telescope is made for TeV gamma-ray bursts on 1, 3, and 5 s timescales. On the basis of a null result from this direct search for PBH evaporations, an upper limit of 1.08 x 10(6) pc(-3) yr(-1) (99% CL) is set on the PBH evaporation rate in the local region of the galaxy, assuming the Standard Model of particle physics. This is more than a factor of two better than the previous limit at this energy range and includes longer timescales than have previously been explored. Comparison of this result with previous limits on the fraction of the critical density comprised by PBHs, Omega(pbh), depends strongly on assumptions made about PBH clustering; in models predicting strong PBH clustering, the limit in this work could be as many as ten orders of magnitude more stringently than those set by diffuse MeV gamma-ray observations

    Downscaling the 2D Bénard convection equations using continuous data assimilation

    No full text
    We consider a recently introduced continuous data assimilation (CDA) approach for downscaling a coarse resolution configuration of the 2D Bénard convection equations into a finer grid. In this CDA, a nudging term, estimated as the misfit between some interpolants of the assimilated coarse-grid measurements and the fine-grid model solution, is added to the model equations to constrain the model. The main contribution of this study is a performance analysis of CDA for downscaling measurements of temperature and velocity. These measurements are assimilated either separately or simultaneously, and the results are compared against those resulting from the standard point-to-point nudging approach (NA). Our numerical results suggest that the CDA solution outperforms that of NA, always converging to the true solution when the velocity is assimilated as has been theoretically proven. Assimilation of temperature measurements only may not always recover the true state as demonstrated in the case study. Various runs are conducted to evaluate the sensitivity of CDA to noise in the measurements, the size, and the time frequency of the measured grid, suggesting a more robust behavior of CDA compared to that of NA
    corecore