844 research outputs found

    Decoherence induced by Smith-Purcell radiation

    Full text link
    The interaction between charged particles and the vacuum fluctuations of the electromagnetic field induces decoherence, and therefore affects the contrast of fringes in an interference experiment. In this article we show that if a double slit experiment is performed near a conducting grating, the fringe visibility is reduced. We find that the reduction of contrast is proportional to the number of grooves in the conducting surface, and that for realistic values of the parameters it could be large enough to be observed. The effect can be understood in terms of the Smith-Purcell radiation produced by the surface currents induced in the conductor.Comment: 10 pages, 3 figures. Improved discussion on experimental perspectives. References added. Version to appear in Phys. Rev.

    High-Contrast Interference in a Thermal Cloud of Atoms

    Full text link
    The coherence properties of a gas of bosonic atoms above the BEC transition temperature were studied. Bragg diffraction was used to create two spatially separated wave packets, which interfere during expansion. Given sufficient expansion time, high fringe contrast could be observed in a cloud of arbitrary temperature. Fringe visibility greater than 90% was observed, which decreased with increasing temperature, in agreement with a simple model. When the sample was "filtered" in momentum space using long, velocity-selective Bragg pulses, the contrast was significantly enhanced in contrast to predictions

    Vortex mass in a superfluid at low frequencies

    Full text link
    An inertial mass of a vortex can be calculated by driving it round in a circle with a steadily revolving pinning potential. We show that in the low frequency limit this gives precisely the same formula that was used by Baym and Chandler, but find that the result is not unique and depends on the force field used to cause the acceleration. We apply this method to the Gross-Pitaevskii model, and derive a simple formula for the vortex mass. We study both the long range and short range properties of the solution. We agree with earlier results that the non-zero compressibility leads to a divergent mass. From the short-range behavior of the solution we find that the mass is sensitive to the form of the pinning potential, and diverges logarithmically when the radius of this potential tends to zero.Comment: 4 page

    Influence on electron coherence from quantum electromagnetic fields in the presence of conducting plates

    Full text link
    The influence of electromagnetic vacuum fluctuations in the presence of the perfectly conducting plate on electrons is studied with an interference experiment. The evolution of the reduced density matrix of the electron is derived by the method of influence functional. We find that the plate boundary anisotropically modifies vacuum fluctuations that in turn affect the electron coherence. The path plane of the interference is chosen either parallel or normal to the plate. In the vicinity of the plate, we show that the coherence between electrons due to the boundary is enhanced in the parallel configuration, but reduced in the normal case. The presence of the second parallel plate is found to boost these effects. The potential relation between the amplitude change and phase shift of interference fringes is pointed out. The finite conductivity effect on electron coherence is discussed.Comment: 29 pages, 3 figure

    Quantum effects on the dynamics of a two-mode atom-molecule Bose-Einstein condensate

    Full text link
    We study the system of coupled atomic and molecular condensates within the two-mode model and beyond mean-field theory (MFT). Large amplitude atom-molecule coherent oscillations are shown to be damped by the rapid growth of fluctuations near the dynamically unstable molecular mode. This result contradicts earlier predictions about the recovery of atom-molecule oscillations in the two-mode limit. The frequency of the damped oscillation is also shown to scale as N/logN\sqrt{N}/\log N with the total number of atoms NN, rather than the expected pure N\sqrt{N} scaling. Using a linearized model, we obtain analytical expressions for the initial depletion of the molecular condensate in the vicinity of the instability, and show that the important effect neglected by mean field theory is an initially non-exponential `spontaneous' dissociation into the atomic vacuum. Starting with a small population in the atomic mode, the initial dissociation rate is sensitive to the exact atomic amplitudes, with the fastest (super-exponential) rate observed for the entangled state, formed by spontaneous dissociation.Comment: LaTeX, 5 pages, 3 PostScript figures, uses REVTeX and epsfig, submitted to Physical Review A, Rapid Communication

    Stochastic Theory of Accelerated Detectors in a Quantum Field

    Full text link
    We analyze the statistical mechanical properties of n-detectors in arbitrary states of motion interacting with each other via a quantum field. We use the open system concept and the influence functional method to calculate the influence of quantum fields on detectors in motion, and the mutual influence of detectors via fields. We discuss the difference between self and mutual impedance and advanced and retarded noise. The mutual effects of detectors on each other can be studied from the Langevin equations derived from the influence functional, as it contains the backreaction of the field on the system self-consistently. We show the existence of general fluctuation- dissipation relations, and for trajectories without event horizons, correlation-propagation relations, which succinctly encapsulate these quantum statistical phenomena. These findings serve to clarify some existing confusions in the accelerated detector problem. The general methodology presented here could also serve as a platform to explore the quantum statistical properties of particles and fields, with practical applications in atomic and optical physics problems.Comment: 32 pages, Late

    Dynamics of Quantum Phase Transition in an Array of Josephson Junctions

    Full text link
    We study the dynamics of the Mott insulator-superfluid quantum phase transition in a periodic 1D array of Josephson junctions. We show that crossing the critical point diabatically i.e. at a finite rate with a quench time τQ\tau_Q induces finite quantum fluctuations of the current around the loop proportional to τQ1/6\tau_Q^{-1/6}. This scaling could be experimentally verified with in array of weakly coupled Bose-Einstein condensates or superconducting grains.Comment: 4 pages in RevTex, 3 .eps figures; 2 references added; accepted for publication in Phys.Rev.Let

    Coarse Grainings and Irreversibility in Quantum Field Theory

    Get PDF
    In this paper we are interested in the studying coarse-graining in field theories using the language of quantum open systems. Motivated by the ideas of Calzetta and Hu on correlation histories we employ the Zwanzig projection technique to obtain evolution equations for relevant observables in self-interacting scalar field theories. Our coarse-graining operation consists in concentrating solely on the evolution of the correlation functions of degree less than nn, a treatment which corresponds to the familiar from statistical mechanics truncation of the BBKGY hierarchy at the n-th level. We derive the equations governing the evolution of mean field and two-point functions thus identifying the terms corresponding to dissipation and noise. We discuss possible applications of our formalism, the emergence of classical behaviour and the connection to the decoherent histories framework.Comment: 25 pages, Late

    Dark-Bright Solitons in Inhomogeneous Bose-Einstein Condensates

    Full text link
    We investigate dark-bright vector solitary wave solutions to the coupled non-linear Schr\"odinger equations which describe an inhomogeneous two-species Bose-Einstein condensate. While these structures are well known in non-linear fiber optics, we show that spatial inhomogeneity strongly affects their motion, stability, and interaction, and that current technology suffices for their creation and control in ultracold trapped gases. The effects of controllably different interparticle scattering lengths, and stability against three-dimensional deformations, are also examined.Comment: 5 pages, 5 figure
    corecore