833 research outputs found

    Quantum Size Effect in Conductivity of Multilayer Metal Films

    Get PDF
    Conductivity of quantized multilayer metal films is analyzed with an emphasis on scattering by rough interlayer interfaces. Three different types of quantum size effect (QSE) in conductivity are predicted. Two of these QSE are similar to those in films with scattering by rough walls. The third type of QSE is unique and is observed only for certain positions of the interface. The corresponding peaks in conductivity are very narrow and high with a finite cutoff which is due only to some other scattering mechanism or the smearing of the interface. There are two classes of these geometric resonances. Some of the resonance positions of the interface are universal and do not depend on the strength of the interface potential while the others are sensitive to this potential. This geometric QSE gradually disappears with an increase in the width of the interlayer potential barrier.Comment: 12 pages, 10 figures, RevTeX4, to be published in Phys. Rev B (April 2003

    Surface Roughness and Size Effects in Quantized Films

    Get PDF
    The effect of random surface roughness on quantum size effects in thin films is discussed. The conductivity of quantized metal films is analyzed for different types of experimentally identified correlation functions of surface inhomogeneities including the Gaussian, exponential, power-law correlators, and correlators with a power-law decay of the power density spectral function. The dependence of the conductivity σ on the film thickness L, correlation radius of inhomogeneities R, and the fermion density is investigated. The goal is to help in extracting surface parameters from transport measurements and to determine the importance of the choice of the proper surface correlator for transport theory. A peculiar size effect is predicted for quantized films with large correlation radius of random surface corrugation. The effect exists for inhomogeneities with Gaussian and exponential power spectrum; if the decay of power spectrum is slow, the films exhibit usual quantum size effect. The conductivity σ exhibits well-pronounced oscillations as a function of channel width L or density of fermions, and large steps as a function of the correlation radius R. These oscillations and steps are explained and their positions identified. This phenomenon, which is reminiscent of magnetic breakthrough, can allow direct observation of the quantum size effect in conductivity of nanoscale metal films. The only region with a nearly universal behavior of transport is the region in which particle wavelength is close to the correlation radius of surface inhomogeneities

    Quantum ratchet transport with minimal dispersion rate

    Get PDF
    We analyze the performance of quantum ratchets by considering the dynamics of an initially localized wave packet loaded into a flashing periodic potential. The directed center-of-mass motion can be initiated by the uniform modulation of the potential height, provided that the modulation protocol breaks all relevant time- and spatial reflection symmetries. A poor performance of quantum ratchet transport is characterized by a slow net motion and a fast diffusive spreading of the wave packet, while the desirable optimal performance is the contrary. By invoking a quantum analog of the classical P\'eclet number, namely the quotient of the group velocity and the dispersion of the propagating wave packet, we calibrate the transport properties of flashing quantum ratchets and discuss the mechanisms that yield low-dispersive directed transport.Comment: 6 pages; 3 figures; 1 tabl

    Using an OPEN UMS format for document flow formalization in medicine

    Get PDF
    The question about construction of medical documents by means of AURRORA MIS with the use of the Open UMS format is considered in the work. The approach suggested allows data storage in the electronic form suitable for generation of required statistical reports and different researches and preserves a possibility of correct data interpretation

    Effect of inter-wall surface roughness correlations on optical spectra of quantum well excitons

    Full text link
    We show that the correlation between morphological fluctuations of two interfaces confining a quantum well strongly suppresses a contribution of interface disorder to inhomogeneous line width of excitons. We also demonstrate that only taking into account these correlations one can explain all the variety of experimental data on the dependence of the line width upon thickness of the quantum well.Comment: 13 pages, 8 figures, Revtex4, submitted to PR

    Investigation of LiFeAs by means of "Break-junction" Technique

    Full text link
    In our tunneling investigation using Andreev superconductor - normal metal - superconductor contacts on LiFeAs single crystals we observed two reproducible independent subharmonic gap structures at dynamic conductance characteristics. From these results, we can derive the energy of the large superconducting gap ΔL=(2.5÷3.4)\Delta_L=(2.5 \div 3.4) meV and the small gap ΔL=(0.9÷1)\Delta_L=(0.9 \div 1) meV at T=4.2T = 4.2 K for the TClocal(10.5÷14)T_C^{local} \approx (10.5 \div 14) K (the contact area critical temperature which deviation causes the variation of ΔL\Delta_L). The BCS-ratio is found to be 2ΔL/kBTC=(4.6÷5.6)2\Delta_L/k_BT_C = (4.6 \div 5.6), whereas 2ΔS/kBTC3.522\Delta_S/k_BT_C \ll 3.52 results from induced superconductivity in the bands with the small gap.Comment: 7 pages, 5 figures. Published in Pis'ma v ZhETF 95, 604-610 (2012

    Receiving hard protective coating of aluminum alloys high-frequency micro plasma oxidation

    Full text link
    In this article mechanical properties of the oxide coverings received at microplasma oxygenating at various frequencies of electric current are considered, results of measurements of thickness and hardness of various samples are given. It is revealed that increase of frequency of electric current of process influences mechanical properties and thickness of an oxidic covering.в данной статье рассматриваются механические свойства оксидных покрытий, полученных при микроплазменном оксидировании на различных частотах электрического тока, приведены результаты измерений толщины и твердости различных образцов. Выявлено, что повышение частоты электрического тока процесса влияет на механические свойства и толщину оксидного покрытия.Работа выполнена в рамках проектной части Государственного задания Министерства образования и науки РФ в сфере научной деятельности № 11.1196.2014/К от 17.07.2014

    Photoluminescence Spectroscopy of the Molecular Biexciton in Vertically Stacked Quantum Dot Pairs

    Full text link
    We present photoluminescence studies of the molecular neutral biexciton-exciton spectra of individual vertically stacked InAs/GaAs quantum dot pairs. We tune either the hole or the electron levels of the two dots into tunneling resonances. The spectra are described well within a few-level, few-particle molecular model. Their properties can be modified broadly by an electric field and by structural design, which makes them highly attractive for controlling nonlinear optical properties.Comment: 4 pages, 5 figures, (v2, revision based on reviewers comments, published
    corecore