11 research outputs found

    ПОЛУЧЕНИЕ И ПРОМЫШЛЕННЫЕ ИСПЫТАНИЯ КОМПАУНДНОГО НЕФТЕКАМЕННОУГОЛЬНОГО СВЯЗУЮЩЕГО В ОАО «РУСАЛ КРАСНОЯРСК»

    Get PDF
    The developed laboratory technology of compounding coal tar and petrochemical products followed by distillation was tested under industrial conditions. The produced pilot batch of the pitch compound had a lower content of benzo(a)pyrene compared to traditional coal-tar pitch that should reduce harmful emissions in the aluminum industry. An experimental batch of the compound pitch was used in the production of under-pin anode paste. It was noted that changing current-carrying pins on the Soderberg anodes installed on the experimental under-pin anode paste was performed in the normal mode, electrolytic cell operation was normal, and no anode failures were recorded.Разработанная в лабораторных условиях технология компаундирования каменноугольной смолы и продукта нефтепереработки с последующей дистилляцией была опробована в промышленных условиях. Выпущенная опытно-промышленная партия компаундного пека имела меньшее содержание бенз(а)пирена, чем обычный каменноугольный пек, что должно снизить выбросы вредных веществ при производстве алюминия. Опытная партия компаундного пека была использована при производстве подштыревой анодной массы. Было отмечено, что перестановка токоподводящих штырей на анодах Содерберга на опытной подштыревой анодной массе проходила в штатном режиме, технологический ход электролизеров – нормальный, нарушения на аноде отсутствуют

    Novel synthesis and electrochemical investigations of ZnO/C composites for lithium-ion batteries

    Full text link
    For the first time, ZnO/C composites were synthesized using zinc glycerolate as a precursor through one-step calcination under a nitrogen atmosphere. The effect of the heat treatment conditions on the structure, composition, morphology as well as on the electrochemical properties regarding application in lithium-ion batteries are investigated. The products obtained by calcination of the precursor in nitrogen at 400—800 °C consist of zinc oxide nanoparticles and amorphous carbon that is in-situ generated from organic components of the glycerolate precursor. When used as anode material for lithium-ion batteries, the as-prepared ZnO/C composite synthesized at a calcination temperature of 700 °C delivers initial discharge and charge capacities of 1061 and 671 mAh g−1 at a current rate of 100 mA g−1 and hence 1.5 times more than bare ZnO, which reaches only 749/439 mAh g−1. The native carbon improves the conductivity, allowing efficient electronic conductivity and Li-ion diffusion. By means of ex-situ XRD studies a two-step storage mechanism is proven. © 2021, The Author(s).This work was supported by the Deutsche Forschungsgemeinschaft through projects KL1824/12-1 and KL 1824/14-1. G.Z. acknowledges support of the state order via the Ministry of Science and Higher Education of Russia (No AAAA-A19-119031890025-9). E.T. acknowledges support by the BMWi through project 03ET6095C (HiKoMat). The authors thank I. Glass for experimental support
    corecore