12,216 research outputs found

    The path to glory untold

    Get PDF
    A philosophical view of the development of the universe and mans' place in developing his cultural conditions are presented. The effects of population growth on the ecology are analyzed. Propositions for improving the conditions of mankind are presented. The influence of cybernation and automation on the development of space exploration are described

    Multiphase modelling of vascular tumour growth in two spatial dimensions

    Get PDF
    In this paper we present a continuum mathematical model of vascular tumour growth which is based on a multiphase framework in which the tissue is decomposed into four distinct phases and the principles of conservation of mass and momentum are applied to the normal/healthy cells, tumour cells, blood vessels and extracellular material. The inclusion of a diffusible nutrient, supplied by the blood vessels, allows the vasculature to have a nonlocal influence on the other phases. Two-dimensional computational simulations are carried out on unstructured, triangular meshes to allow a natural treatment of irregular geometries, and the tumour boundary is captured as a diffuse interface on this mesh, thereby obviating the need to explicitly track the (potentially highly irregular and ill-defined) tumour boundary. A hybrid finite volume/finite element algorithm is used to discretise the continuum model: the application of a conservative, upwind, finite volume scheme to the hyperbolic mass balance equations and a finite element scheme with a stable element pair to the generalised Stokes equations derived from momentum balance, leads to a robust algorithm which does not use any form of artificial stabilisation. The use of a matrix-free Newton iteration with a finite element scheme for the nutrient reaction-diffusion equations allows full nonlinearity in the source terms of the mathematical model. Numerical simulations reveal that this four-phase model reproduces the characteristic pattern of tumour growth in which a necrotic core forms behind an expanding rim of well-vascularised proliferating tumour cells. The simulations consistently predict linear tumour growth rates. The dependence of both the speed with which the tumour grows and the irregularity of the invading tumour front on the model parameters are investigated

    Discrete Hubbard-Stratonovich transformations for systems with orbital degeneracy

    Full text link
    A discrete Hubbard-Stratonovich transformation is presented for systems with an orbital degeneracy NN and a Hubbard Coulomb interaction without multiplet effects. An exact transformation is obtained by introducing an external field which takes N+1N+1 values. Alternative approximate transformations are presented, where the field takes fewer values, for instance two values corresponding to an Ising spin.Comment: 4 pages, revtex, 1 eps figure, additional material avalable at http://librix.mpi-stuttgart.mpg.de/docs/ANDERSEN/fullerene

    Effect of Particle-Hole Asymmetry on the Mott-Hubbard Metal-Insulator Transition

    Full text link
    The Mott-Hubbard metal-insulator transition is one of the most important problems in correlated electron systems. In the past decade, much progress has been made on examining a particle-hole symmetric form of the transition in the Hubbard model with dynamical mean field theory where it was found that the electronic self energy develops a pole at the transition. We examine the particle-hole asymmetric metal-insulator transition in the Falicov-Kimball model, and find that a number of features change when the noninteracting density of states has a finite bandwidth. Since, generically particle-hole symmetry is broken in real materials, our results have an impact on understanding the metal-insulator transition in real materials.Comment: 5 pages, 3 figure

    Cumulant expansion of the periodic Anderson model in infinite dimension

    Full text link
    The diagrammatic cumulant expansion for the periodic Anderson model with infinite Coulomb repulsion (U=∞U=\infty ) is considered here for an hypercubic lattice of infinite dimension (d=∞d=\infty ). The same type of simplifications obtained by Metzner for the cumulant expansion of the Hubbard model in the limit of d=∞d=\infty , are shown to be also valid for the periodic Anderson model.Comment: 13 pages, 7 figures.ps. To be published in J. Phys. A: Mathematical and General (1997

    Spectral function of the one-dimensional Hubbard model away from half filling

    Full text link
    We calculate the photoemission spectral function of the one-dimensional Hubbard model away from half filling using the dynamical density matrix renormalization group method. An approach for calculating momentum-dependent quantities in finite open chains is presented. Comparison with exact Bethe Ansatz results demonstrates the unprecedented accuracy of our method. Our results show that the photoemission spectrum of the quasi-one-dimensional conductor TTF-TCNQ provides evidence for spin-charge separation on the scale of the conduction band width.Comment: REVTEX, 4 pages including 4 EPS figures (changed); correct chemical potential used to define excitation energies in figures and tex

    Chemical Lecture Demonstrations: An Opportunity for Engagement through Collections, Instruction, and Reference

    Get PDF
    Chemical lecture demonstrations have been used as a pedagogical tool since at least the founding of chemistry as a discipline in the 1600s. This paper describes how science librarians can engage chemistry faculty and students through chemical lecture demonstrations. This paper describes chemical lecture demonstrations–including history and efficacy–and discusses how science librarians can engage chemistry faculty and students through collections, instruction, and reference in support of this pedagogy. In addition to outlining a research guide and lesson plan for chemical lecture demonstrations, this paper identifies chemical lecture demonstration monographs found in WorldCat® and analyzes the holdings of those monographs within the thirty-six-member Greater Western Library Alliance (GWLA) consortium

    Corrections in the Chemical Literature: Their Number and Nature

    Get PDF
    Corrections, errata, and corrigenda have played a vital role in maintaining the integrity of the scholarly journal record. Being cognizant of these corrections has always been a challenge for researchers and their management a bane to librarians. Identification of corrections has been made easier with the indexing of corrections by a few commercial databases and more recently by some publishers linking corrections to articles on their e-journal platforms. Few studies have examined the nature of these corrections, especially outside of the biomedical literature where article retraction has been the primary focus. This paper quantifies and qualifies the nature of corrections within the field of chemistry and compares the effectiveness of Scopus and Web of Science in locating corrections within scholarly journals. The study found that the correction rate averaged about 1.4 percent for the journals examined. While there were numerous types of corrections, chemical structures, omission of relevant references, and data errors were some of the most frequent types of published corrections

    Compressibility of the Two-Dimensional infinite-U Hubbard Model

    Full text link
    We study the interactions between the coherent quasiparticles and the incoherent Mott-Hubbard excitations and their effects on the low energy properties in the U=∞U=\infty Hubbard model. Within the framework of a systematic large-N expansion, these effects first occur in the next to leading order in 1/N. We calculate the scattering phase shift and the free energy, and determine the quasiparticle weight Z, mass renormalization, and the compressibility. It is found that the compressibility is strongly renormalized and diverges at a critical doping δc=0.07±0.01\delta_c=0.07\pm0.01. We discuss the nature of this zero-temperature phase transition and its connection to phase separation and superconductivity.Comment: 4 pages, 3 eps figures, final version to appear in Phys. Rev. Let
    • …
    corecore