12,392 research outputs found
Holographic classification of Topological Insulators and its 8-fold periodicity
Using generic properties of Clifford algebras in any spatial dimension, we
explicitly classify Dirac hamiltonians with zero modes protected by the
discrete symmetries of time-reversal, particle-hole symmetry, and chirality.
Assuming the boundary states of topological insulators are Dirac fermions, we
thereby holographically reproduce the Periodic Table of topological insulators
found by Kitaev and Ryu. et. al, without using topological invariants nor
K-theory. In addition we find candidate Z_2 topological insulators in classes
AI, AII in dimensions 0,4 mod 8 and in classes C, D in dimensions 2,6 mod 8.Comment: 19 pages, 4 Table
The Effect of the Random Magnetic Field Component on the Parker Instability
The Parker instability is considered to play important roles in the evolution
of the interstellar medium. Most studies on the development of the instability
so far have been based on an initial equilibrium system with a uniform magnetic
field. However, the Galactic magnetic field possesses a random component in
addition to the mean uniform component, with comparable strength of the two
components. Parker and Jokipii have recently suggested that the random
component can suppress the growth of small wavelength perturbations. Here, we
extend their analysis by including gas pressure which was ignored in their
work, and study the stabilizing effect of the random component in the
interstellar gas with finite pressure. Following Parker and Jokipii, the
magnetic field is modeled as a mean azimuthal component, , plus a random
radial component, , where is a random function
of height from the equatorial plane. We show that for the observationally
suggested values of , the tension due to the random
component becomes important, so that the growth of the instability is either
significantly reduced or completely suppressed. When the instability still
works, the radial wavenumber of the most unstable mode is found to be zero.
That is, the instability is reduced to be effectively two-dimensional. We
discuss briefly the implications of our finding.Comment: 10 pages including 2 figures, to appear in The Astrophysical Journal
Letter
First-Order Melting of a Moving Vortex Lattice: Effects of Disorder
We study the melting of a moving vortex lattice through numerical simulations
with the current driven 3D XY model with disorder. We find that there is a
first-order phase transition even for large disorder when the corresponding
equilibrium transition is continuous. The low temperature phase is an
anisotropic moving glass.Comment: Important changes from original version. Finite size analysis of
results has been added. Figure 2 has been changed. There is a new additional
Figure. To be published in Physical Review Letter
Spin Berry phase in the Fermi arc states
Unusual electronic property of a Weyl semi-metallic nanowire is revealed. Its
band dispersion exhibits multiple subbands of partially flat dispersion,
originating from the Fermi arc states. Remarkably, the lowest energy flat
subbands bear a finite size energy gap, implying that electrons in the Fermi
arc surface states are susceptible of the spin Berry phase. This is shown to be
a consequence of spin-to-surface locking in the surface electronic states. We
verify this behavior and the existence of spin Berry phase in the low-energy
effective theory of Fermi arc surface states on a cylindrical nanowire by
deriving the latter from a bulk Weyl Hamiltonian. We point out that in any
surface state exhibiting a spin Berry phase pi, a zero-energy bound state is
formed along a magnetic flux tube of strength, hc/(2e). This effect is
highlighted in a surfaceless bulk system pierced by a dislocation line, which
shows a 1D chiral mode along the dislocation line.Comment: 9 pages, 9 figure
Electromagnetic and gravitational responses and anomalies in topological insulators and superconductors
One of the defining properties of the conventional three-dimensional
("-", or "spin-orbit"-) topological insulator is its
characteristic magnetoelectric effect, as described by axion electrodynamics.
In this paper, we discuss an analogue of such a magnetoelectric effect in the
thermal (or gravitational) and the magnetic dipole responses in all symmetry
classes which admit topologically non-trivial insulators or superconductors to
exist in three dimensions. In particular, for topological superconductors (or
superfluids) with time-reversal symmetry which lack SU(2) spin rotation
symmetry (e.g. due to spin-orbit interactions), such as the B phase of He,
the thermal response is the only probe which can detect the non-trivial
topological character through transport. We show that, for such topological
superconductors, applying a temperature gradient produces a thermal- (or mass-)
surface current perpendicular to the thermal gradient. Such charge, thermal, or
magnetic dipole responses provide a definition of topological insulators and
superconductors beyond the single-particle picture. Moreover we find, for a
significant part of the 'ten-fold' list of topological insulators found in
previous work in the absence of interactions, that in general dimensions the
effective field theory describing the space-time responses is governed by a
field theory anomaly. Since anomalies are known to be insensitive to whether
the underlying fermions are interacting or not, this shows that the
classification of these topological insulators is robust to adiabatic
deformations by interparticle interactions in general dimensionality. In
particular, this applies to symmetry classes DIII, CI, and AIII in three
spatial dimensions, and to symmetry classes D and C in two spatial dimensions.Comment: 16 pages, 2 figure
Advances in the management of idiopathic pulmonary fibrosis
Idiopathic pulmonary fibrosis (IPF) is a common form of interstitial lung disease and usually results in progressive respiratory insufficiency and death. Steady progress has been made in understanding the pathogenesis of IPF and multiple clinical trials are ongoing, but effective therapy remains elusive
Field-driven topological glass transition in a model flux line lattice
We show that the flux line lattice in a model layered HTSC becomes unstable
above a critical magnetic field with respect to a plastic deformation via
penetration of pairs of point-like disclination defects. The instability is
characterized by the competition between the elastic and the pinning energies
and is essentially assisted by softening of the lattice induced by a
dimensional crossover of the fluctuations as field increases. We confirm
through a computer simulation that this indeed may lead to a phase transition
from crystalline order at low fields to a topologically disordered phase at
higher fields. We propose that this mechanism provides a model of the low
temperature field--driven disordering transition observed in neutron
diffraction experiments on single crystals.Comment: 11 pages, 4 figures available upon request via snail mail from
[email protected]
Synthetic Observations of Simulated Radio Galaxies I: Radio and X-ray Analysis
We present an extensive synthetic observational analysis of numerically-
simulated radio galaxies designed to explore the effectiveness of conventional
observational analyses at recovering physical source properties. These are the
first numerical simulations with sufficient physical detail to allow such a
study. The present paper focuses on extraction of magnetic field properties
from nonthermal intensity information. Synchrotron and inverse-Compton
intensities provided meaningful information about distributions and strengths
of magnetic fields, although considerable care was called for. Correlations
between radio and X-ray surface brightness correctly revealed useful dynamical
relationships between particles and fields. Magnetic field strength estimates
derived from the ratio of X-ray to radio intensity were mostly within about a
factor of two of the RMS field strength along a given line of sight. When
emissions along a given line of sight were dominated by regions close to the
minimum energy/equipartition condition, the field strengths derived from the
standard power-law-spectrum minimum energy calculation were also reasonably
close to actual field strengths, except when spectral aging was evident.
Otherwise, biases in the minimum- energy magnetic field estimation mirrored
actual differences from equipartition. The ratio of the inverse-Compton
magnetic field to the minimum-energy magnetic field provided a rough measure of
the actual total energy in particles and fields in most instances, within an
order of magnitude. This may provide a practical limit to the accuracy with
which one may be able to establish the internal energy density or pressure of
optically thin synchrotron sources.Comment: 43 pages, 14 figures; accepted for publication in ApJ, v601 n2
February 1, 200
- …