40,526 research outputs found

    Chromosome Evolution in New World Monkeys (Platyrrhini)

    Get PDF
    During the last decades, New World monkey (NWM, Platyrrhini, Anthropoideae) comparative cytogenetics has shed light on many fundamental aspects of genome organisation and evolution in this fascinating, but also highly endangered group of neotropical primates. In this review, we first provide an overview about the evolutionary origin of the inferred ancestral NWM karyotype of 2n = 54 chromosomes and about the lineage-specific chromosome rearrangements resulting in the highly divergent karyotypes of extant NWM species, ranging from 2n = 16 in a titi monkey to 2n = 62 in a woolly monkey. Next, we discuss the available data on the chromosome phylogeny of NWM in the context of recent molecular phylogenetic analyses. In the last part, we highlight some recent research on the molecular mechanisms responsible for the large-scale evolutionary genomic changes in platyrrhine monkeys. Copyright (C) 2012 S. Karger AG, Base

    A simple model of price formation

    Full text link
    A simple Ising spin model which can describe the mechanism of price formation in financial markets is proposed. In contrast to other agent-based models, the influence does not flow inward from the surrounding neighbors to the center site, but spreads outward from the center to the neighbors. The model thus describes the spread of opinions among traders. It is shown via standard Monte Carlo simulations that very simple rules lead to dynamics that duplicate those of asset prices.Comment: Version 2: 4 pages, 4 figures; added more stringent statistical analysis; to appear in Int. J. Modern Physics C, Vol. 13, No. 1 (2002

    Gravitational waves from three-dimensional core-collapse supernova models: The impact of moderate progenitor rotation

    Full text link
    We present predictions for the gravitational-wave (GW) emission of three-dimensional supernova (SN) simulations performed for a 15 solar-mass progenitor with the Prometheus-Vertex code using energy-dependent, three-flavor neutrino transport. The progenitor adopted from stellar evolution calculations including magnetic fields had a fairly low specific angular momentum (j_Fe <~ 10^{15} cm^2/s) in the iron core (central angular velocity ~0.2 rad/s), which we compared to simulations without rotation and with artificially enhanced rotation (j_Fe <~ 2*10^{16} cm^2/s; central angular velocity ~0.5 rad/s). Our results confirm that the time-domain GW signals of SNe are stochastic, but possess deterministic components with characteristic patterns at low frequencies (<~200 Hz), caused by mass motions due to the standing accretion shock instability (SASI), and at high frequencies, associated with gravity-mode oscillations in the surface layer of the proto-neutron star (PNS). Non-radial mass motions in the post-shock layer as well as PNS convection are important triggers of GW emission, whose amplitude scales with the power of the hydrodynamic flows. There is no monotonic increase of the GW amplitude with rotation, but a clear correlation with the strength of SASI activity. Our slowly rotating model is a fainter GW emitter than the non-rotating model because of weaker SASI activity and damped convection in the post-shock layer and PNS. In contrast, the faster rotating model exhibits a powerful SASI spiral mode during its transition to explosion, producing the highest GW amplitudes with a distinctive drift of the low-frequency emission peak from ~80-100 Hz to ~40-50 Hz. This migration signifies shock expansion, whereas non-exploding models are discriminated by the opposite trend.Comment: Added new figure, figure 9. Updated figure 9, now figure 10. Modified the discussion of the proto-neutron star convection. Added a figure showing the average rotation rate as a function of radius. Added a section discussing where the low-frequency gravitational waves are generated, this information is visualized in figure 9. We also made some minor changes to the text and selected plot

    Emission line models for the lowest-mass core collapse supernovae. I: Case study of a 9 M⊙M_\odot one-dimensional neutrino-driven explosion

    Full text link
    A large fraction of core-collapse supernovae (CCSNe), 30-50%, are expected to originate from the low-mass end of progenitors with MZAMS =8−12 M⊙M_{\rm ZAMS}~= 8-12~M_\odot. However, degeneracy effects make stellar evolution modelling of such stars challenging, and few predictions for their supernova light curves and spectra have been presented. Here we calculate synthetic nebular spectra of a 9 M⊙M_\odot Fe CCSN model exploded with the neutrino mechanism. The model predicts emission lines with FWHM∼\sim1000 km/s, including signatures from each deep layer in the metal core. We compare this model to observations of the three subluminous IIP SNe with published nebular spectra; SN 1997D, SN 2005cs, and SN 2008bk. The prediction of both line profiles and luminosities are in good agreement with SN 1997D and SN 2008bk. The close fit of a model with no tuning parameters provides strong evidence for an association of these objects with low-mass Fe CCSNe. For SN 2005cs, the interpretation is less clear, as the observational coverage ended before key diagnostic lines from the core had emerged. We perform a parameterised study of the amount of explosively made stable nickel, and find that none of these three SNe show the high 58^{58}Ni/56^{56}Ni ratio predicted by current models of electron capture SNe (ECSNe) and ECSN-like explosions. Combined with clear detection of lines from O and He shell material, these SNe rather originate from Fe core progenitors. We argue that the outcome of self-consistent explosion simulations of low-mass stars, which gives fits to many key observables, strongly suggests that the class of subluminous Type IIP SNe is the observational counterpart of the lowest mass CCSNe.Comment: Resubmitted to MNRAS after referee comment

    Observation of quantum spin noise in a 1D light-atoms quantum interface

    Get PDF
    We observe collective quantum spin states of an ensemble of atoms in a one-dimensional light-atom interface. Strings of hundreds of cesium atoms trapped in the evanescent fiel of a tapered nanofiber are prepared in a coherent spin state, a superposition of the two clock states. A weak quantum nondemolition measurement of one projection of the collective spin is performed using a detuned probe dispersively coupled to the collective atomic observable, followed by a strong destructive measurement of the same spin projection. For the coherent spin state we achieve the value of the quantum projection noise 40 dB above the detection noise, well above the 3 dB required for reconstruction of the negative Wigner function of nonclassical states. We analyze the effects of strong spatial inhomogeneity inherent to atoms trapped and probed by the evanescent waves. We furthermore study temporal dynamics of quantum fluctuations relevant for measurement-induced spin squeezing and assess the impact of thermal atomic motion. This work paves the road towards observation of spin squeezed and entangled states and many-body interactions in 1D spin ensembles

    Global Anisotropies in Supernova Explosions and Pulsar Recoil

    Full text link
    We show by two-dimensional and first three-dimensional simulations of neutrino-driven supernova explosions that low (l=1,2) modes can dominate the flow pattern in the convective postshock region on timescales of hundreds of milliseconds after core bounce. This can lead to large global anisotropy of the supernova explosion and pulsar kicks in excess of 500 km/s.Comment: 3 pages, 2 figures, contribution to Procs. 12th Workshop on Nuclear Astrophysics, Ringberg Castle, March 22-27, 200

    Dynamics and phase evolution of Bose-Einstein condensates in one-dimensional optical lattices

    Full text link
    We report experimental results on the dynamics and phase evolution of Bose-Einstein condensates in 1D optical lattices. The dynamical behaviour is studied by adiabatically loading the condensate into the lattice and subsequently switching off the magnetic trap. In this case, the condensate is free to expand inside the periodic structure of the optical lattice. The phase evolution of the condensate, on the other hand, can be studied by non-adiabatically switching on the periodic potential. We observe decays and revivals of the interference pattern after a time-of-flight.Comment: 6 pages, 5 figures; submitted to the Proceedings of the 11th Laser Physics Workshop, Bratislava 200

    Towards a Topological Mechanism of Quark Confinement

    Get PDF
    We report on new analyses of the topological and chiral vacuum structure of four-dimensional QCD on the lattice. Correlation functions as well as visualization of monopole currents in the maximally Abelian gauge emphasize their topological origin and gauge invariant characterization. The (anti)selfdual character of strong vacuum fluctuations is reveiled by smoothing. In full QCD, (anti)instanton positions are also centers of the local chiral condensate and quark charge density. Most results turn out generically independent of the action and the cooling/smoothing method.Comment: 14 pages, Contribution to YKIS9
    • …
    corecore