9,639 research outputs found

    Permeability evolution across carbonate hosted normal fault zones

    Get PDF
    Acknowledgements: The authors would like to thank Total E&P and BG Group for project funding and support, and the Industry Technology Facilitator for facilitating the collaborative development (grant number 3322PSD). The authors would also like to express their gratitude to the Aberdeen Formation Evaluation Society and the College of Physical Sciences at the University of Aberdeen for partial financial support. Raymi Castilla (Total E&P), Fabrizio Agosta and Cathy Hollis are also thanked for their constructive comments and suggestions to improve the standard of this manuscript as are John Still and Colin Taylor (University of Aberdeen) for technical assistance in the laboratory. Piero Gianolla is thanked for his editorial handling of the manuscript.Peer reviewedPostprin

    Current utility of the ankle-brachial index (ABI) in general practice: implications for its use in cardiovascular disease screening

    Get PDF
    Peripheral arterial disease (PAD) is a marker of systemic atherosclerosis and associated with a three to six fold increased risk of death from cardiovascular causes. Furthermore, it is typically asymptomatic and under-diagnosed; this has resulted in escalating calls for the instigation of Primary Care PAD screening via Ankle Brachial Index (ABI) measurement. However, there is limited evidence regarding the feasibility of this and if the requisite core skills and knowledge for such a task already exist within primary care. This study aimed to determine the current utility of ABI measurement in general practices across Wales, with consideration of the implications for its use as a cardiovascular risk screening tool

    The role of atrial natriuretic peptide to attenuate inflammation in a mouse skin wound and individually perfused rat mesenteric microvessels.

    Get PDF
    We tested the hypothesis that the anti-inflammatory actions of atrial natriuretic peptide (ANP) result from the modulation of leukocyte adhesion to inflamed endothelium and not solely ANP ligation of endothelial receptors to stabilize endothelial barrier function. We measured vascular permeability to albumin and accumulation of fluorescent neutrophils in a full-thickness skin wound on the flank of LysM-EGFP mice 24 h after formation. Vascular permeability in individually perfused rat mesenteric microvessels was also measured after leukocytes were washed out of the vessel lumen. Thrombin increased albumin permeability and increased the accumulation of neutrophils. The thrombin-induced inflammatory responses were attenuated by pretreating the wound with ANP (30 min). During pretreatment ANP did not lower permeability, but transiently increased baseline albumin permeability concomitant with the reduction in neutrophil accumulation. ANP did not attenuate acute increases in permeability to histamine and bradykinin in individually perfused rat microvessels. The hypothesis that anti-inflammatory actions of ANP depend solely on endothelial responses that stabilize the endothelial barrier is not supported by our results in either individually perfused microvessels in the absence of circulating leukocytes or the more chronic skin wound model. Our results conform to the alternate hypothesis that ANP modulates the interaction of leukocytes with the inflamed microvascular wall of the 24 h wound. Taken together with our previous observations that ANP reduces deformability of neutrophils and their strength of attachment, rolling, and transvascular migration, these observations provide the basis for additional investigations of ANP as an anti-inflammatory agent to modulate leukocyte-endothelial cell interactions

    Electroweak baryogenesis induced by a scalar field

    Get PDF
    A cosmological pseudoscalar field coupled to hypercharge topological number density can exponentially amplify hyperelectric and hypermagnetic fields while coherently rolling or oscillating, leading to the formation of a time-dependent condensate of topological number density. The topological condensate can be converted, under certain conditions, into baryons in sufficient quantity to explain the observed baryon asymmetry in the universe. The amplified hypermagnetic field can perhaps sufficiently strengthen the electroweak phase transition, and by doing so, save any pre-existing baryon number asymmetry from extinction.Comment: 8 pages, 4 figure

    Optimal interlayer hopping and high temperature Bose–Einstein condensation of local pairs in quasi 2D superconductors

    Get PDF
    Both FeSe and cuprate superconductors are quasi 2D materials with high transition temperatures and local fermion pairs. Motivated by such systems, we investigate real space pairing of fermions in an anisotropic lattice model with intersite attraction, V, and strong local Coulomb repulsion, U, leading to a determination of the optimal conditions for superconductivity from Bose–Einstein condensation. Our aim is to gain insight as to why high temperature superconductors tend to be quasi 2D. We make both analytically and numerically exact solutions for two body local pairing applicable to intermediate and strong V. We find that the Bose–Einstein condensation temperature of such local pairs pairs is maximal when hopping between layers is intermediate relative to in-plane hopping, indicating that the quasi 2D nature of unconventional superconductors has an important contribution to their high transition temperatures

    Curvaton reheating: an application to braneworld inflation

    Get PDF
    The curvaton was introduced recently as a distinct inflationary mechanism for generating adiabatic density perturbations. Implicit in that scenario is that the curvaton offers a new mechanism for reheating after inflation, as it is a form of energy density not diluted by the inflationary expansion. We consider curvaton reheating in the context of a braneworld inflation model, {\em steep inflation}, which features a novel use of the braneworld to give a new mechanism for ending inflation. The original steep inflation model featured reheating by gravitational particle production, but the inefficiency of that process brings observational difficulties. We demonstrate here that the phenomenology of steep inflation is much improved by curvaton reheating.Comment: 8 pages RevTeX4 file with two figures incorporated. Improved referencing, matches PRD accepted versio

    Type IIA Orientifold Limit of M-Theory on Compact Joyce 8-Manifold of Spin(7)-Holonomy

    Get PDF
    We show that M-theory compactified on a compact Joyce 8-manifold of Spin(7)Spin(7)-holonomy, which yields an effective theory in D=3D = 3 with N\N = 1 supersymmetry, admits at some special points in it moduli space a description in terms of type IIA theory on an orientifold of compact Joyce 7-manifold of G2G_2-holonomy. We find the evidence in favour of this duality by computing the massless spectra on both M-thory side and type IIA side. For the latter, we compute the massless spectra by going to the orbifold limit of the Joyce 7-manifold.Comment: 26 pages, 2 eps figures, Latex file, two references and one footnote added, corrected some typo

    Gene duplication in an African cichlid adaptive radiation

    Get PDF
    Background Gene duplication is a source of evolutionary innovation and can contribute to the divergence of lineages; however, the relative importance of this process remains to be determined. The explosive divergence of the African cichlid adaptive radiations provides both a model for studying the general role of gene duplication in the divergence of lineages and also an exciting foray into the identification of genomic features that underlie the dramatic phenotypic and ecological diversification in this particular lineage. We present the first genome-wide study of gene duplication in African cichlid fishes, identifying gene duplicates in three species belonging to the Lake Malawi adaptive radiation (Metriaclima estherae, Protomelas similis, Rhamphochromis “chilingali”) and one closely related species from a non-radiated riverine lineage (Astatotilapia tweddlei). Results Using Astatotilapia burtoni as reference, microarray comparative genomic hybridization analysis of 5689 genes reveals 134 duplicated genes among the four cichlid species tested. Between 51 and 55 genes were identified as duplicated in each of the three species from the Lake Malawi radiation, representing a 38%–49% increase in number of duplicated genes relative to the non-radiated lineage (37 genes). Duplicated genes include several that are involved in immune response, ATP metabolism and detoxification. Conclusions These results contribute to our understanding of the abundance and type of gene duplicates present in cichlid fish lineages. The duplicated genes identified in this study provide candidates for the analysis of functional relevance with regard to phenotype and divergence. Comparative sequence analysis of gene duplicates can address the role of positive selection and adaptive evolution by gene duplication, while further study across the phylogenetic range of cichlid radiations (and more generally in other adaptive radiations) will determine whether the patterns of gene duplication seen in this study consistently accompany rapid radiation

    Quintessential inflation

    Get PDF
    We present an explicit observationally acceptable model for evolution from inflation to the present epoch under the assumption that the entropy and matter of the familiar universe are from gravitational particle production at the end of inflation. This eliminates the problem of finding a satisfactory coupling of the inflaton and matter fields. Since the inflaton potential V(ϕ)V(\phi) may be a monotonic function of the inflaton ϕ\phi, the inflaton energy could produce an observationally significant effective cosmological constant, as in quintessence.Comment: 6 pages, REVTeX, 1 figur

    The asymptotic quasi-stationary states of the two-dimensional magnetically confined plasma and of the planetary atmosphere

    Full text link
    We derive the differential equation governing the asymptotic quasi-stationary states of the two dimensional plasma immersed in a strong confining magnetic field and of the planetary atmosphere. These two systems are related by the property that there is an intrinsic constant length: the Larmor radius and respectively the Rossby radius and a condensate of the vorticity field in the unperturbed state related to the cyclotronic gyration and respectively to the Coriolis frequency. Although the closest physical model is the Charney-Hasegawa-Mima (CHM) equation, our model is more general and is related to the system consisting of a discrete set of point-like vortices interacting in plane by a short range potential. A field-theoretical formalism is developed for describing the continuous version of this system. The action functional can be written in the Bogomolnyi form (emphasizing the role of Self-Duality of the asymptotic states) but the minimum energy is no more topological and the asymptotic structures appear to be non-stationary, which is a major difference with respect to traditional topological vortex solutions. Versions of this field theory are discussed and we find arguments in favor of a particular form of the equation. We comment upon the significant difference between the CHM fluid/plasma and the Euler fluid and respectively the Abelian-Higgs vortex models.Comment: Latex 126 pages, 7 eps figures included. Discussion on various forms of the equatio
    corecore