2,085 research outputs found
Prediction of the derivative discontinuity in density functional theory from an electrostatic description of the exchange and correlation potential
We propose a new approach to approximate the exchange and correlation (XC)
functional in density functional theory. The XC potential is considered as an
electrostatic potential, generated by a fictitious XC density, which is in turn
a functional of the electronic density. We apply the approach to develop a
correction scheme that fixes the asymptotic behavior of any approximated XC
potential for finite systems. Additionally, the correction procedure gives the
value of the derivative discontinuity; therefore it can directly predict the
fundamental gap as a ground-state property.Comment: 5 pages, 4 figure
qTorch: The Quantum Tensor Contraction Handler
Classical simulation of quantum computation is necessary for studying the
numerical behavior of quantum algorithms, as there does not yet exist a large
viable quantum computer on which to perform numerical tests. Tensor network
(TN) contraction is an algorithmic method that can efficiently simulate some
quantum circuits, often greatly reducing the computational cost over methods
that simulate the full Hilbert space. In this study we implement a tensor
network contraction program for simulating quantum circuits using multi-core
compute nodes. We show simulation results for the Max-Cut problem on 3- through
7-regular graphs using the quantum approximate optimization algorithm (QAOA),
successfully simulating up to 100 qubits. We test two different methods for
generating the ordering of tensor index contractions: one is based on the tree
decomposition of the line graph, while the other generates ordering using a
straight-forward stochastic scheme. Through studying instances of QAOA
circuits, we show the expected result that as the treewidth of the quantum
circuit's line graph decreases, TN contraction becomes significantly more
efficient than simulating the whole Hilbert space. The results in this work
suggest that tensor contraction methods are superior only when simulating
Max-Cut/QAOA with graphs of regularities approximately five and below. Insight
into this point of equal computational cost helps one determine which
simulation method will be more efficient for a given quantum circuit. The
stochastic contraction method outperforms the line graph based method only when
the time to calculate a reasonable tree decomposition is prohibitively
expensive. Finally, we release our software package, qTorch (Quantum TensOR
Contraction Handler), intended for general quantum circuit simulation.Comment: 21 pages, 8 figure
Autoimmune diseases, their pharmacological treatment and the cardiovascular system
Cardiovascular system involvement is a frequent complication of autoimmune diseases (AD) such as systemic lupus erythematosus, scleroderma, rheumatoid arthritis, spondyloarthropaties or psoriatic arthritis. The most common forms of such involvement are pericarditis, myocarditis, accelerated atherosclerosis resulting in myocardial infarction or stroke, arrhythmias, conduction abnormalities or congestive heart failure. Some of these manifestations may be dramatic in their course and ultimately fatal. The treatment of AD may further affect the cardiovascular system and result in a lower quality of life, higher mortality and increased cost of healthcare. The aim of this review is to discuss possible cardiac complications of various AD and the related treatment of these diseases
- …