89 research outputs found
Plastic localization phenomena in a Mn-alloyed austenitic steel
A 0.5 wt pct C, 22 wt pct Mn austenitic steel, recently proposed for fabricating automotive body structures by cold sheet forming, exhibits plastic localizations (PLs) during uniaxial tensile tests, yet showing a favorable overall strength and ductility. No localization happens during biaxial Erichsen cupping tests. Full-thickness tensile and Erichsen specimens, cut from as-produced steel sheets, were polished and tested at different strain rates. During the tensile tests, the PL phenomena consist first of macroscopic deformation bands traveling along the tensile axis, and then of a series of successive stationary deformation bands, each adjacent to the preceding ones; both types of bands involve the full specimen width and yield a macroscopically observable surface relief. No comparable surface relief was observed during the standard Erichsen tests. Because the stress state is known to influence PL phenomena, reduced-width Erichsen tests were performed on polished sheet specimens, in order to explore the transition from biaxial to uniaxial loading; surface relief lines were observed on a 20-mm-wide specimen, but not on wider ones
The PAMINO-project: evaluating a primary care-based educational program to improve the quality of life of palliative patients
<p>Abstract</p> <p>Background</p> <p>The care of palliative patients challenges the health care system in both quantity and quality. Especially the role of primary care givers needs to be strengthened to provide them with the knowledge and the confidence of applying an appropriate end-of-life care to palliative patients. To improve health care services for palliative patients in primary care, interested physicians in and around Heidelberg, Germany, are enabled to participate in the community-based program 'Palliative Medical Initiative North Baden (PAMINO)' to improve their knowledge in dealing with palliative patients. The impact of this program on patients' health and quality of life remains to be evaluated.</p> <p>Methods/Design</p> <p>The evaluation of PAMINO is a non-randomized, controlled study. Out of the group of primary care physicians who took part in the PAMINO program, a sample of 45 physicians and their palliative patients will be compared to a sample of palliative patients of 45 physicians who did not take part in the program. Every four weeks for 6 months or until death, patients, physicians, and the patients' family caregivers in both groups answer questions to therapy strategies, quality of life (QLQ-C15-PAL, POS), pain (VAS), and burden for family caregivers (BSFC). The inclusion of physicians and patients in the study starts in March 2007.</p> <p>Discussion</p> <p>Although participating physicians value the increase in knowledge they receive from PAMINO, the effects on patients remain unclear. If the evaluation reveals a clear benefit for patients' quality of life, a larger-scale implementation of the program is considered. </p> <p><b>Trial registration</b>: The study was registered at ‘current controlled trials (CCT)’, registration number: ISRCTN78021852.</p
Fibulin-2 Is a Driver of Malignant Progression in Lung Adenocarcinoma
The extracellular matrix of epithelial tumors undergoes structural remodeling during periods of
uncontrolled growth, creating regional heterogeneity and torsional stress. How matrix integrity is
maintained in the face of dynamic biophysical forces is largely undefined. Here we investigated the
role of fibulin-2, a matrix glycoprotein that functions biomechanically as an inter-molecular clasp and
thereby facilitates supra-molecular assembly. Fibulin-2 was abundant in the extracellular matrix of
human lung adenocarcinomas and was highly expressed in tumor cell lines derived from mice that
develop metastatic lung adenocarcinoma from co-expression of mutant K-ras and p53. Loss-offunction
experiments in tumor cells revealed that fibulin-2 was required for tumor cells to grow and
metastasize in syngeneic mice, a surprising finding given that other intra-tumoral cell types are known
to secrete fibulin-2. However, tumor cells grew and metastasized equally well in Fbln2-null and -wildtype
littermates, implying that malignant progression was dependent specifically upon tumor cellderived
fibulin-2, which could not be offset by other cellular sources of fibulin-2. Fibulin-2 deficiency
impaired the ability of tumor cells to migrate and invade in Boyden chambers, to create a stiff
extracellular matrix in mice, to cross-link secreted collagen, and to adhere to collagen. We conclude
that fibulin-2 is a driver of malignant progression in lung adenocarcinoma and plays an unexpected
role in collagen cross-linking and tumor cell adherence to collagen
Increased peri-ductal collagen micro-organization may contribute to raised mammographic density
BACKGROUND: High mammographic density is a therapeutically modifiable risk factor for breast cancer. Although mammographic density is correlated with the relative abundance of collagen-rich fibroglandular tissue, the causative mechanisms, associated structural remodelling and mechanical consequences remain poorly defined. In this study we have developed a new collaborative bedside-to-bench workflow to determine the relationship between mammographic density, collagen abundance and alignment, tissue stiffness and the expression of extracellular matrix organising proteins. METHODS: Mammographic density was assessed in 22 post-menopausal women (aged 54–66 y). A radiologist and a pathologist identified and excised regions of elevated non-cancerous X-ray density prior to laboratory characterization. Collagen abundance was determined by both Masson’s trichrome and Picrosirius red staining (which enhances collagen birefringence when viewed under polarised light). The structural specificity of these collagen visualisation methods was determined by comparing the relative birefringence and ultrastructure (visualised by atomic force microscopy) of unaligned collagen I fibrils in reconstituted gels with the highly aligned collagen fibrils in rat tail tendon. Localised collagen fibril organisation and stiffness was also evaluated in tissue sections by atomic force microscopy/spectroscopy and the abundance of key extracellular proteins was assessed using mass spectrometry. RESULTS: Mammographic density was positively correlated with the abundance of aligned periductal fibrils rather than with the abundance of amorphous collagen. Compared with matched tissue resected from the breasts of low mammographic density patients, the highly birefringent tissue in mammographically dense breasts was both significantly stiffer and characterised by large (>80 μm long) fibrillar collagen bundles. Subsequent proteomic analyses not only confirmed the absence of collagen fibrosis in high mammographic density tissue, but additionally identified the up-regulation of periostin and collagen XVI (regulators of collagen fibril structure and architecture) as potential mediators of localised mechanical stiffness. CONCLUSIONS: These preliminary data suggest that remodelling, and hence stiffening, of the existing stromal collagen microarchitecture promotes high mammographic density within the breast. In turn, this aberrant mechanical environment may trigger neoplasia-associated mechanotransduction pathways within the epithelial cell population. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13058-015-0664-2) contains supplementary material, which is available to authorized users
Effects of annealing treatment prior to cold rolling on delayed fracture properties in ferrite-austenite duplex lightweight steels
Tensile properties of recently developed automotive high-strength steels containing about 10 wt pct of Mn and Al are superior to other conventional steels, but the active commercialization has been postponed because they are often subjected to cracking during formation or to the delayed fracture after formation. Here, the delayed fracture behavior of a ferrite-austenite duplex lightweight steel whose microstructure was modified by a batch annealing treatment at 1023 K (750 A degrees C) prior to cold rolling was examined by HCl immersion tests of cup specimens, and was compared with that of an unmodified steel. After the batch annealing, band structures were almost decomposed as strong textures of {100}aOE (c) 011 > alpha-fibers and {111}aOE (c) 112 > gamma-fibers were considerably dissolved, while ferrite grains were refined. The steel cup specimen having this modified microstructure was not cracked when immersed in an HCl solution for 18 days, whereas the specimen having unmodified microstructure underwent the delayed fracture within 1 day. This time delayed fracture was more critically affected by difference in deformation characteristics such as martensitic transformation and deformation inhomogeneity induced from concentration of residual stress or plastic strain, rather than the difference in initial microstructures. The present work gives a promise for automotive applications requiring excellent mechanical and delayed fracture properties as well as reduced specific weight.ope
- …