198 research outputs found

    GaN and InN nanowires grown by MBE: a comparison

    Full text link
    Morphological, optical and transport properties of GaN and InN nanowires grown by molecular beam epitaxy (MBE) have been studied. The differences between the two materials in respect to growth parameters and optimization procedure was stressed. The nanowires crystalline quality has been investigated by means of their optical properties. A comparison of the transport characteristics was given. For each material a band schema was shown, which takes into account transport and optical features and is based on Fermi level pinning at the surface.Comment: 5 pages, 5 figure

    Length versus radius relationship for ZnO nanowires grown via vapour phase transport

    Get PDF
    We model the growth of ZnO nanowires via vapour phase transport and examine the relationship predicted between the nanowire length and radius. The model predicts that the lengths of the nanowires increase with decreasing nanowire radii. This prediction is in very good agreement with experimental data from a variety of nanowire samples, including samples showing a broad range of nanowire radii and samples grown using a lithographic technique to constrain the nanowire radius. The close agreement of the model and the experimental data strongly support supporting the inclusion of a surface diffusion term in the model for the incorporation of species into a growing nanowire

    Developing 1D nanostructure arrays for future nanophotonics

    Get PDF
    There is intense and growing interest in one-dimensional (1-D) nanostructures from the perspective of their synthesis and unique properties, especially with respect to their excellent optical response and an ability to form heterostructures. This review discusses alternative approaches to preparation and organization of such structures, and their potential properties. In particular, molecular-scale printing is highlighted as a method for creating organized pre-cursor structure for locating nanowires, as well as vapor–liquid–solid (VLS) templated growth using nano-channel alumina (NCA), and deposition of 1-D structures with glancing angle deposition (GLAD). As regards novel optical properties, we discuss as an example, finite size photonic crystal cavity structures formed from such nanostructure arrays possessing highQand small mode volume, and being ideal for developing future nanolasers

    Growth of crystals

    No full text

    Oriented crystallization on amorphous substrates

    No full text

    Growth of crystals

    No full text
    • 

    corecore