21 research outputs found

    De-esterified homogalacturonan enrichment of the cell wall region adjoining the preprophase cortical cytoplasmic zone in some protodermal cell types of three land plants

    No full text
    The distribution of highly de-esterified homogalacturonans (HGs) in dividing protodermal cells of the monocotyledon Zea mays, the dicotyledon Vigna sinensis, and the fern Asplenium nidus was investigated in order to examine whether the cell wall region adjoining the preprophase band (PPB) is locally diversified. Application of immunofluorescence revealed that de-esterified HGs were accumulated selectively in the cell wall adjacent to the PPB in: (a) symmetrically dividing cells of stomatal rows of Z. mays, (b) the asymmetrically dividing protodermal cells of Z. mays, (c) the symmetrically dividing guard cell mother cells (GMCs) of Z. mays and V. sinensis, and (d) the symmetrically dividing protodermal cells of A. nidus. A common feature of the above cell types is that the cell division plane is defined by extrinsic cues. The presented data suggest that the PPB cortical zone-plasmalemma and the adjacent cell wall region function in a coordinated fashion in the determination/accomplishment of the cell division plane, behaving as a continuum. The de-esterified HGs, among other possible functions, might be involved in the perception and the transduction of the extrinsic cues determining cell division plane in the examined cells. © 2019 by the authors. Licensee MDPI, Basel, Switzerland

    Spatio-temporal diversification of the cell wall matrix materials in the developing stomatal complexes of Zea mays

    No full text
    Main conclusion: The matrix cell wall materials, in developingZea maysstomatal complexes are asymmetrically distributed, a phenomenon appearing related to the local cell wall expansion and deformation, the establishment of cell polarity, and determination of the cell division plane. In cells of developing Zea mays stomatal complexes, definite cell wall regions expand determinately and become locally deformed. This differential cell wall behavior is obvious in the guard cell mother cells (GMCs) and the subsidiary cell mother cells (SMCs) that locally protrude towards the adjacent GMCs. The latter, emitting a morphogenetic stimulus, induce polarization/asymmetrical division in SMCs. Examination of immunolabeled specimens revealed that homogalacturonans (HGAs) with a high degree of de-esterification (2F4- and JIM5-HGA epitopes) and arabinogalactan proteins are selectively distributed in the extending and deformed cell wall regions, while their margins are enriched with rhamnogalacturonans (RGAs) containing highly branched arabinans (LM6-RGA epitope). In SMCs, the local cell wall matrix differentiation constitutes the first structural event, indicating the establishment of cell polarity. Moreover, in the premitotic GMCs and SMCs, non-esterified HGAs (2F4-HGA epitope) are preferentially localized in the cell wall areas outlining the cytoplasm where the preprophase band is formed. In these areas, the forthcoming cell plate fuses with the parent cell walls. These data suggest that the described heterogeneity in matrix cell wall materials is probably involved in: (a) local cell wall expansion and deformation, (b) the transduction of the inductive GMC stimulus, and (c) the determination of the division plane in GMCs and SMCs. © 2016, Springer-Verlag Berlin Heidelberg

    Formation of an endoplasmic reticulum ring associated with acetylated microtubules in the angiosperm preprophase band

    No full text
    We investigated the organization of the cortical endoplasmic reticulum (ER) in prophase cells of the angiosperms Zea mays, Triticum turgidum, and Vigna sinensis. In both symmetrically and asymmetrically dividing protodermal leaf cells, cortical ER was enriched in the preprophase band and colocalized there with microtubules, forming a ring-like structure (ER ring). In contrast, ER ring was absent from prophase root-tip cells of the same plants, suggesting that ER ring formation in the preprophase band is organ specific. Immunolabeling of the protodermal leaf cells revealed the presence of acetylated microtubules, which are more stable than the nonacetylated ones. In contrast, neither this post-translational modification of tubulin nor an accumulation of ER in the preprophase band was detected in root-tip cells. Experimentally delaying the maturation/disassembly of the microtubule ring of the preprophase band by taxol or cyclopiazonic acid treatment led to the appearance of ER ring and acetylated microtubules in the preprophase band. Together, our data show that in dividing cells of angiosperms, an ER ring associated with acetylated microtubules forms in the preprophase band. © 2012 Wiley Periodicals, Inc

    Auxin as an inducer of asymmetrical division generating the subsidiary cells in stomatal complexes of Zea mays

    No full text
    The data presented in this work revealed that in Zea mays the exogenously added auxins indole-3-acetic acid (IAA) and 1-napthaleneacetic acid (NAA), promoted the establishment of subsidiary cell mother cell (SMC) polarity and the subsequent subsidiary cell formation, while treatment with auxin transport inhibitors 2,3,5-triiodobenzoic acid (TIBA) and 1-napthoxyacetic acid (NOA) specifically blocked SMC polarization and asymmetrical division. Furthermore, in young guard cell mother cells (GMCs) the PIN1 auxin efflux carriers were mainly localized in the transverse GMC faces, while in the advanced GMCs they appeared both in the transverse and the lateral ones adjacent to SMCs. Considering that phosphatidyl-inositol-3-kinase (PI3K) is an active component of auxin signal transduction and that phospholipid signaling contributes in the establishment of polarity, treatments with the specific inhibitor of the PI3K LY294002 were carried out. The presence of LY294002 suppressed polarization of SMCs and prevented their asymmetrical division, whereas combined treatment with exogenously added NAA and LY294002 restricted the promotional auxin influence on subsidiary cell formation. These findings support the view that auxin is involved in Z. mays subsidiary cell formation, probably functioning as inducer of the asymmetrical SMC division. Collectively, the results obtained from treatments with auxin transport inhibitors and the appearance of PIN1 proteins in the lateral GMC faces indicate a local transfer of auxin from GMCs to SMCs. Moreover, auxin signal transduction seems to be mediated by the catalytic function of PI3K. © 2015 Taylor & Francis Group, LLC

    Polarized endoplasmic reticulum aggregations in the establishing division plane of protodermal cells of the fern Asplenium nidus

    No full text
    The determination of the division plane in protodermal cells of the fern Asplenium nidus occurs during interphase with the formation of the phragmosome, the organization of which is controlled by the actomyosin system. Usually, the phragmosomes between adjacent cells were oriented on the same plane. In the phragmosomal cortical cytoplasm, an interphase microtubule (MT) ring was formed and large quantities of endoplasmic reticulum (ER) membranes were gathered, forming an interphase U-like ER bundle. During preprophase/prophase, the interphase MT ring and the U-like ER bundle were transformed into a MT and an ER preprophase band (PPB), respectively. Parts of the ER-PPB were maintained during mitosis. Furthermore, the plasmalemma as well as the nuclear envelope displayed local polarization on the phragmosome plane, while the cytoplasm between them was occupied by distinct ER aggregations. These consistent findings suggest that Α. nidus protodermal cells constitute a unique system in which three elements of the endomembrane system (ER, plasmalemma, and nuclear envelope) show specific characteristics in the establishing division plane. Our experimental data support that the organization of the U-like ER bundle is controlled on a cellular level by the actomyosin system and intercellularly by factors emitted from the leaf apex. The possible role of the above endomembrane system elements on the mechanism that coordinates the determination of the division plane between adjacent cells in protodermal tissue of A. nidus is discussed. © 2014, Springer-Verlag Wien

    Cell wall modifications in giant cells induced by the plant parasitic nematode meloidogyne incognita in wild-type (Col-0) and the fra2 arabidopsis thaliana katanin mutant

    No full text
    Meloidogyne incognita is a root knot nematode (RKN) species which is among the most notoriously unmanageable crop pests with a wide host range. It inhabits plants and induces unique feeding site structures within host roots, known as giant cells (GCs). The cell walls of the GCs undergo the process of both thickening and loosening to allow expansion and finally support nutrient uptake by the nematode. In this study, a comparative in situ analysis of cell wall polysaccharides in the GCs of wild-type Col-0 and the microtubule-defective fra2 katanin mutant, both infected with M. incognita has been carried out. The fra2 mutant had an increased infection rate. Moreover, fra2 roots exhibited a differential pectin and hemicellulose distribution when compared to Col-0 probably mirroring the fra2 root developmental defects. Features of fra2 GC walls include the presence of high-esterified pectic homogalacturonan and pectic arabinan, possibly to compensate for the reduced levels of callose, which was omnipresent in GCs of Col-0. Katanin severing of microtubules seems important in plant defense against M. incognita, with the nematode, however, to be nonchalant about this “katanin deficiency” and eventually induce the necessary GC cell wall modifications to establish a feeding site. © 2019 by the authors. Licensee MDPI, Basel, Switzerland

    Cell wall matrix polysaccharide distribution and cortical microtubule organization: Two factors controlling mesophyll cell morphogenesis in land plants

    No full text
    Background and aims This work investigates the involvement of local differentiation of cell wall matrix polysaccharides and the role of microtubules in the morphogenesis of mesophyll cells (MCs) of three types (lobed, branched and palisade) in the dicotyledon Vigna sinensis and the fern Asplenium nidus. Methods Homogalacturonan (HGA) epitopes recognized by the 2F4, JIM5 and JIM7 antibodies and callose were immunolocalized in hand-made leaf sections. Callose was also stained with aniline blue. We studied microtubule organization by tubulin immunofluorescence and transmission electron microscopy. Results In both plants, the matrix cell wall polysaccharide distribution underwent definite changes during MC differentiation. Callose constantly defined the sites of MC contacts. The 2F4 HGA epitope in V. sinensis first appeared in MC contacts but gradually moved towards the cell wall regions facing the intercellular spaces, while in A. nidus it was initially localized at the cell walls delimiting the intercellular spaces, but finally shifted to MC contacts. In V. sinensis, the JIM5 and JIM7 HGA epitopes initially marked the cell walls delimiting the intercellular spaces and gradually shifted in MC contacts, while in A. nidus they constantly enriched MC contacts. In all MC types examined, the cortical microtubules played a crucial role in their morphogenesis. In particular, in palisade MCs, cortical microtubule helices, by controlling cellulose microfibril orientation, forced these MCs to acquire a truncated cone-like shape. Unexpectedly in V. sinensis, the differentiation of colchicine-Affected MCs deviated completely, since they developed a cell wall ingrowth labyrinth, becoming transfer-like cells. Conclusions The results of this work and previous studies on Zea mays (Giannoutsou et al., Annals of Botany 2013; 112: 1067-1081) revealed highly controlled local cell wall matrix differentiation in MCs of species belonging to different plant groups. This, in coordination with microtubule-dependent cellulose microfibril alignment, spatially controlled cell wall expansion, allowing MCs to acquire their particular shape. © 2016 The Author 2016

    Early local differentiation of the cell wall matrix defines the contact sites in lobed mesophyll cells of Zea mays

    No full text
    Background and AimsThe morphogenesis of lobed mesophyll cells (MCs) is highly controlled and coupled with intercellular space formation. Cortical microtubule rings define the number and the position of MC isthmi. This work investigated early events of MC morphogenesis, especially the mechanism defining the position of contacts between MCs. The distributions of plasmodesmata, the hemicelluloses callose and (1 → 3,1 → 4)-β-d-glucans (MLGs) and the pectin epitopes recognized by the 2F4, JIM5, JIM7 and LM6 antibodies were studied in the cell walls of Zea mays MCs.MethodsMatrix cell wall polysaccharides were immunolocalized in hand-made sections and in sections of material embedded in LR White resin. Callose was also localized using aniline blue in hand-made sections. Plasmodesmata distribution was examined by transmission electron microscopy.ResultsBefore reorganization of the dispersed cortical microtubules into microtubule rings, particular bands of the longitudinal MC walls, where the MC contacts will form, locally differentiate by selective (1) deposition of callose and the pectin epitopes recognized by the 2F4, LM6, JIM5 and JIM7 antibodies, (2) degradation of MLGs and (3) formation of secondary plasmodesmata clusterings. This cell wall matrix differentiation persists in cell contacts of mature MCs. Simultaneously, the wall bands between those of future cell contacts differentiate with (1) deposition of local cell wall thickenings including cellulose microfibrils, (2) preferential presence of MLGs, (3) absence of callose and (4) transient presence of the pectins identified by the JIM5 and JIM7 antibodies. The wall areas between cell contacts expand determinately to form the cell isthmi and the cell lobes. Conclusions The morphogenesis of lobed MCs is characterized by the early patterned differentiation of two distinct cell wall subdomains, defining the sites of the future MC contacts and of the future MC isthmi respectively. This patterned cell wall differentiation precedes cortical microtubule reorganization and may define microtubule ring disposition. © 2013 The Author. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved

    PIN1 auxin efflux carrier absence in Meloidogyne incognita-induced root-knots of tomato plants

    No full text
    The nematode species Meloidogyne incognita infects a large variety of cultivated crops and is one of nature’s most notorious pests. One cultivated plant which is prone to M. incognita infestation is the tomato. Knowing that in A. thaliana the PIN auxin efflux transporters distribution is being altered upon early invasion by M. incognita, the PIN1 allocation patterns in the giant cells of tomato plants after 15 and 25 days of infection were investigated. PIN1 was absent from the giant cells’ membrane in both assessment timings examined, indicating the maintenance of a local auxin maxima, which was also supported by IAA immunodetection. PIN1 distribution pattern could be attributed on either the nematodes nutritional needs throughout its life cycle or due to the tomato plants differential responses upon M. incognita infection. © 2021, Koninklijke Nederlandse Planteziektenkundige Vereniging

    Callose and homogalacturonan epitope distribution in stomatal complexes of Zea mays and Vigna sinensis

    No full text
    This article deals with the distribution of callose and of the homogalacturonan (HG) epitopes recognized by LM20, JIM5, and 2F4 antibodies in cell walls of differentiating and functioning stomatal complexes of the monocotyledon Zea mays and the dicotyledon Vigna sinensis. The findings revealed that, during stomatal development, in these plant species, callose appears in an accurately spatially and timely controlled manner in cell walls of the guard cells (GCs). In functioning stomata of both plants, callose constitutes a dominant cell wall matrix material of the polar ventral cell wall ends and of the local GC cell wall thickenings. In Zea mays, the LM20, JIM5, or 2F4 antibody-recognized HG epitopes were mainly located in the expanding cell wall regions of the stomatal complexes, while in Vigna sinensis, they were deposited in the local cell wall thickenings of the GCs as well as at the ledges of the stomatal pore. Consideration of the presented data favors the view that in the stomatal complexes of the monocotyledon Z. mays and the dicotyledon V. sinensis, the esterified HGs contribute to the cell wall expansion taking place during GC morphogenesis and the opening of the stomatal pore. Besides, callose and the highly de-esterified HGs allow to GC cell wall regions to withstand the mechanical stresses exerted during stomatal function. © 2019, Springer-Verlag GmbH Austria, part of Springer Nature
    corecore