13 research outputs found

    Antimicrobial activity of xanthatin from Xanthium spinosum L

    Full text link
    [EN] Dichloromethane extracts from Xanthium spinosum L. were fractionated and the fractions tested for their bactericidal and fungicidal activity. From the active fraction, a compound was isolated and identified as xanthatin (I). Xanthatin was active against Colletotrichum gloesporoides, Trichothecium roseum, Bacillus cereus and Staphylococcus aureus.Ginesta Peris, E.; García-Breijo, F.; Primo Yúfera, E. (1994). Antimicrobial activity of xanthatin from Xanthium spinosum L. Letters in Applied Microbiology. 18(4):206-208. doi:10.1111/j.1472-765X.1994.tb00848.xS20620818

    Responses of evergreen and deciduous Quercus species to enhanced ozone levels

    Full text link
    Plants of one evergreen oak (Quercus ilex) and three deciduous oaks (Q. faginea, with small leaves; Q. pyrenaica and Q. robur, with large leaves) were exposed both to filtered air and to enhanced ozone levels in Open-Top Chambers. Q. faginea and Q. pyrenaica were studied for the first time. Based on visible injury, gas exchange, chlorophyll content and biomass responses, Q. pyrenaica was the most sensitive species, and Q. ilex was the most tolerant, followed by Q. faginea. Functional leaf traits of the species were related to differences in sensitivity, while accumulated ozone flux via stomata (POD1.6) partly contributed to the observed differences. For risk assessment of Mediterranean vegetation, the diversity of responses detected in this study should be taken into account, applying appropriate critical levels. © 2010 Elsevier Ltd. All rights reserved.We thank both the Ministerio de Medio Ambiente y Medio Rural y Maritimo (in collaboration with ICP-Forests), and the Conselleria de Medi Ambient, Aigua i Habitatge and Interreg III (ForMedOzone and VegetPollOzone projects) for supporting the OTC activity. Institut Universitario CEAM-UMH is also supported by Generalitat Valenciana and Fundacion Bancaja, benefiting from CONSOLIDER-INGENIO 2010 (GRACCIE) and Prometeo (Generalitat Valenciana) Programs. Filippo Bussotti and two anonymous referees are thanked for their useful comments. Carmen Martin is also thanked for taking care of the plants.Calatayud, V.; Cervero, J.; Calvo, E.; García Breijo, FJ.; Reig Armiñana, J.; Sanz, M. (2011). Responses of evergreen and deciduous Quercus species to enhanced ozone levels. Environmental Pollution. 159(1):55-63. doi:10.1016/j.envpol.2010.09.024S5563159

    Trebouxia lynnae sp. nov. (former Trebouxia sp. TR9): biology and biogeography of an epitome lichen symbiotic microalga

    Get PDF
    Two microalgal species, Trebouxia jamesii and Trebouxia sp. TR9, were detected as the main photobionts coexisting in the thalli of the lichen Ramalina farinacea. Trebouxia sp. TR9 emerged as anew taxon in lichen symbioses and was successfully isolated and propagated in in vitro culture andthoroughly investigated. Several years of research have confirmed the taxon Trebouxia sp. TR9 tobe a model/reference organism for studying mycobiont–photobiont association patterns in lichensymbioses. Trebouxia sp. TR9 is the first symbiotic, lichen-forming microalga for which an exhaustivecharacterization of cellular ultrastructure, physiological traits, genetic and genomic diversity is available.The cellular ultrastructure was studied by light, electron and confocal microscopy; physiologicaltraits were studied as responses to different abiotic stresses. The genetic diversity was previouslyanalyzed at both the nuclear and organelle levels by using chloroplast, mitochondrial, and nucleargenome data, and a multiplicity of phylogenetic analyses were carried out to study its intraspecificdiversity at a biogeographical level and its specificity association patterns with the mycobiont.Here, Trebouxia sp. TR9 is formally described by applying an integrative taxonomic approach and ispresented to science as Trebouxia lynnae, in honor of Lynn Margulis, who was the primary modernproponent for the significance of symbiosis in evolution. The complete set of analyses that werecarried out for its characterization is provided

    Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus Competition

    Full text link
    Ramalina farinacea is an epiphytic fruticose lichen that is relatively abundant in areas with Mediterranean, subtropical or temperate climates. Little is known about photobiont diversity in different lichen populations. The present study examines the phycobiont composition of several geographically distant populations of R. farinacea from the Iberian Peninsula, Canary Islands and California as well as the physiological performance of isolated phycobionts. Based on anatomical observations and molecular analyses, the coexistence of two different taxa of Trebouxia (working names, TR1 and TR9) was determined within each thallus of R. farinacea in all of the analysed populations. Examination of the effects of temperature and light on growth and photosynthesis indicated a superior performance of TR9 under relatively high temperatures and irradiances while TR1 thrived at moderate temperature and irradiance. Ramalina farinacea thalli apparently represent a specific and selective form of symbiotic association involving the same two Trebouxia phycobionts. Strict preservation of this pattern of algal coexistence is likely favoured by the different and probably complementary ecophysiological responses of each phycobiont, thus facilitating the proliferation of this lichen in a wide range of habitats and geographic areas. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.This study was funded by the Spanish Ministry of Education and Science (CGL2006-12917-C02-01/02), the Spanish Ministry of Science and Innovation (CGL2009-13429-C02-01/02), the AECID (PCI_A/024755/09) and the Generalitat Valenciana (PROMETEO 174/2008 GVA). We are grateful to Dr J. Gimeno-Romeu (University of California, Davis, USA) and to Dr P. J. G. de Nova (IREC, Ciudad Real, Spain), who were the first to isolate DNA from Ramalina farinacea thalli in our group. Wendy Ran revised the manuscript in English.Casano, L.; Del Campo, E.; García Breijo, FJ.; Reig Armiñana, J.; Gasulla, F.; Del Hoyo, A.; Guéra, A.... (2011). Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus Competition. Environmental Microbiology. 13(3):806-818. https://doi.org/10.1111/j.1462-2920.2010.02386.xS806818133Angert, A. L., Huxman, T. E., Chesson, P., & Venable, D. L. (2009). Functional tradeoffs determine species coexistence via the storage effect. Proceedings of the National Academy of Sciences, 106(28), 11641-11645. doi:10.1073/pnas.0904512106Baker, N. R., & Oxborough, K. (s. f.). Chlorophyll Fluorescence as a Probe of Photosynthetic Productivity. Advances in Photosynthesis and Respiration, 65-82. doi:10.1007/978-1-4020-3218-9_3Barreno , E. Herrera-Campos , M. García-Breijo , F. Gasulla , F. Reig-Armiñana , J. 2008 Non photosynthetic bacteria associated to cortical structures on Ramalina and Usnea thalli from Mexico http://192.104.39.110/archive/IAL6abstracts.pdfBECK, A., FRIEDL, T., & RAMBOLD, G. (1998). Selectivity of photobiont choice in a defined lichen community: inferences from cultural and molecular studies. New Phytologist, 139(4), 709-720. doi:10.1046/j.1469-8137.1998.00231.xBilger, W., & Bj�rkman, O. (1991). Temperature dependence of violaxanthin de-epoxidation and non-photochemical fluorescence quenching in intact leaves ofGossypium hirsutum L. andMalva parviflora L. Planta, 184(2), 226-234. doi:10.1007/bf01102422Bj�rkman, O., & Demmig, B. (1987). Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta, 170(4), 489-504. doi:10.1007/bf00402983Bold, H. C., & Parker, B. C. (1962). Some supplementary attributes in the classification of chlorococcum species. Archiv f�r Mikrobiologie, 42(3), 267-288. doi:10.1007/bf00422045Cenis, J. L. (1992). Rapid extraction of fungal DNA for PCR amplification. Nucleic Acids Research, 20(9), 2380-2380. doi:10.1093/nar/20.9.2380Del Campo, E. M., Casano, L. M., Gasulla, F., & Barreno, E. (2010). Suitability of chloroplast LSU rDNA and its diverse group I introns for species recognition and phylogenetic analyses of lichen-forming Trebouxia algae. Molecular Phylogenetics and Evolution, 54(2), 437-444. doi:10.1016/j.ympev.2009.10.024Demmig-Adams, B., & Adams, W. W. (1996). The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends in Plant Science, 1(1), 21-26. doi:10.1016/s1360-1385(96)80019-7Demmig-Adams, B., M�guas, C., Adams, W. W., Meyer, A., Kilian, E., & Lange, O. L. (1990). Effect of high light on the efficiency of photochemical energy conversion in a variety of lichen species with green and blue-green phycobionts. Planta, 180(3), 400-409. doi:10.1007/bf01160396DePriest, P. T. (2004). Early Molecular Investigations of Lichen-Forming Symbionts: 1986–2001. Annual Review of Microbiology, 58(1), 273-301. doi:10.1146/annurev.micro.58.030603.123730DOERING, M., & PIERCEY-NORMORE, M. D. (2009). Genetically divergent algae shape an epiphytic lichen community on Jack Pine in Manitoba. The Lichenologist, 41(1), 69-80. doi:10.1017/s0024282909008111Friedl, T. (1989). Comparative ultrastructure of pyrenoids inTrebouxia (Microthamniales, Chlorophyta). Plant Systematics and Evolution, 164(1-4), 145-159. doi:10.1007/bf00940435Gasulla, F., de Nova, P. G., Esteban-Carrasco, A., Zapata, J. M., Barreno, E., & Guéra, A. (2009). Dehydration rate and time of desiccation affect recovery of the lichenic algae Trebouxia erici: alternative and classical protective mechanisms. Planta, 231(1), 195-208. doi:10.1007/s00425-009-1019-yGasulla, F., Guéra, A., & Barreno, E. (2010). “A simple and rapid method for isolating lichen photobionts“. Symbiosis, 51(2), 175-179. doi:10.1007/s13199-010-0064-4Gauze, G. F. (1934). The struggle for existence, by G. F. Gause. doi:10.5962/bhl.title.4489Genty, B., Briantais, J.-M., & Baker, N. R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA) - General Subjects, 990(1), 87-92. doi:10.1016/s0304-4165(89)80016-9Gross, K. (2008). Positive interactions among competitors can produce species-rich communities. Ecology Letters, 11(9), 929-936. doi:10.1111/j.1461-0248.2008.01204.xGUZOW-KRZEMIŃSKA, B. (2006). Photobiont flexibility in the lichen Protoparmeliopsis muralis as revealed by ITS rDNA analyses. The Lichenologist, 38(5), 469-476. doi:10.1017/s0024282906005068Haruta, S., Kato, S., Yamamoto, K., & Igarashi, Y. (2009). Intertwined interspecies relationships: approaches to untangle the microbial network. Environmental Microbiology, 11(12), 2963-2969. doi:10.1111/j.1462-2920.2009.01956.xJOHANSEN, S., & HAUGEN, P. (2001). A new nomenclature of group I introns in ribosomal DNA. RNA, 7(7), 935-936. doi:10.1017/s1355838201010500Jones, A. ., Berkelmans, R., van Oppen, M. J. ., Mieog, J. ., & Sinclair, W. (2008). A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proceedings of the Royal Society B: Biological Sciences, 275(1641), 1359-1365. doi:10.1098/rspb.2008.0069Kopecky, J., Azarkovich, M., Pfündel, E. E., Shuvalov, V. A., & Heber, U. (2005). Thermal Dissipation of Light Energy is Regulated Differently and by Different Mechanisms in Lichens and Higher Plants. Plant Biology, 7(2), 156-167. doi:10.1055/s-2005-837471Kosugi, M., Arita, M., Shizuma, R., Moriyama, Y., Kashino, Y., Koike, H., & Satoh, K. (2009). Responses to Desiccation Stress in Lichens are Different from Those in Their Photobionts. Plant and Cell Physiology, 50(4), 879-888. doi:10.1093/pcp/pcp043Kranner, I., Cram, W. J., Zorn, M., Wornik, S., Yoshimura, I., Stabentheiner, E., & Pfeifhofer, H. W. (2005). Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proceedings of the National Academy of Sciences, 102(8), 3141-3146. doi:10.1073/pnas.0407716102Kroken, S., & Taylor, J. W. (2000). Phylogenetic Species, Reproductive Mode, and Specificity of the Green AlgaTrebouxiaForming Lichens with the Fungal GenusLetharia. The Bryologist, 103(4), 645-660. doi:10.1639/0007-2745(2000)103[0645:psrmas]2.0.co;2Little, A. F. (2004). Flexibility in Algal Endosymbioses Shapes Growth in Reef Corals. Science, 304(5676), 1492-1494. doi:10.1126/science.1095733Loarie, S. R., Duffy, P. B., Hamilton, H., Asner, G. P., Field, C. B., & Ackerly, D. D. (2009). The velocity of climate change. Nature, 462(7276), 1052-1055. doi:10.1038/nature08649Muggia, L., Grube, M., & Tretiach, M. (2008). Genetic diversity and photobiont associations in selected taxa of the Tephromela atra group (Lecanorales, lichenised Ascomycota). Mycological Progress, 7(3), 147-160. doi:10.1007/s11557-008-0560-6Niyogi, K. K. (2004). Is PsbS the site of non-photochemical quenching in photosynthesis? Journal of Experimental Botany, 56(411), 375-382. doi:10.1093/jxb/eri056O’Brien, H. E., Miadlikowska, J., & Lutzoni, F. (2005). Assessing host specialization in symbiotic cyanobacteria associated with four closely related species of the lichen fungusPeltigera. European Journal of Phycology, 40(4), 363-378. doi:10.1080/09670260500342647Ohmura, Y., Kawachi, M., Kasai, F., Watanabe, M. M., & Takeshita, S. (2006). Genetic combinations of symbionts in a vegetatively reproducing lichen,Parmotrema tinctorum, based on ITS rDNA sequences. The Bryologist, 109(1), 43-59. doi:10.1639/0007-2745(2006)109[0043:gcosia]2.0.co;2Piercey-Normore, M. D. (2005). The lichen-forming ascomyceteEvernia mesomorphaassociates with multiple genotypes ofTrebouxia jamesii. New Phytologist, 169(2), 331-344. doi:10.1111/j.1469-8137.2005.01576.xPombert, J.-F., Lemieux, C., & Turmel, M. (2006). BMC Biology, 4(1), 3. doi:10.1186/1741-7007-4-3Rambold, G., Friedl, T., & Beck, A. (1998). Photobionts in Lichens: Possible Indicators of Phylogenetic Relationships? The Bryologist, 101(3), 392. doi:10.1639/0007-2745(1998)101[392:pilpio]2.0.co;2Romeike, J., Friedl, T., Helms, G., & Ott, S. (2002). Genetic Diversity of Algal and Fungal Partners in Four Species of Umbilicaria (Lichenized Ascomycetes) Along a Transect of the Antarctic Peninsula. Molecular Biology and Evolution, 19(8), 1209-1217. doi:10.1093/oxfordjournals.molbev.a004181Rosenberg, E., Sharon, G., & Zilber-Rosenberg, I. (2009). The hologenome theory of evolution contains Lamarckian aspects within a Darwinian framework. Environmental Microbiology, 11(12), 2959-2962. doi:10.1111/j.1462-2920.2009.01995.xSchreiber, U., Schliwa, U., & Bilger, W. (1986). Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynthesis Research, 10(1-2), 51-62. doi:10.1007/bf00024185Skaloud, P., & Peksa, O. (2010). Evolutionary inferences based on ITS rDNA and actin sequences reveal extensive diversity of the common lichen alga Asterochloris (Trebouxiophyceae, Chlorophyta). Molecular Phylogenetics and Evolution, 54(1), 36-46. doi:10.1016/j.ympev.2009.09.035Wegley, L., Edwards, R., Rodriguez-Brito, B., Liu, H., & Rohwer, F. (2007). Metagenomic analysis of the microbial community associated with the coral Porites astreoides. Environmental Microbiology, 9(11), 2707-2719. doi:10.1111/j.1462-2920.2007.01383.xWeis, E., & Berry, J. A. (1987). Quantum efficiency of Photosystem II in relation to ‘energy’-dependent quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 894(2), 198-208. doi:10.1016/0005-2728(87)90190-3Wornik, S., & Grube, M. (2009). Joint Dispersal Does Not Imply Maintenance of Partnerships in Lichen Symbioses. Microbial Ecology, 59(1), 150-157. doi:10.1007/s00248-009-9584-yYAHR, R., VILGALYS, R., & DEPRIEST, P. T. (2004). Strong fungal specificity and selectivity for algal symbionts in Florida scrub Cladonia lichens. Molecular Ecology, 13(11), 3367-3378. doi:10.1111/j.1365-294x.2004.02350.xYahr, R., Vilgalys, R., & DePriest, P. T. (2006). Geographic variation in algal partners of Cladonia subtenuis (Cladoniaceae) highlights the dynamic nature of a lichen symbiosis. New Phytologist, 171(4), 847-860. doi:10.1111/j.1469-8137.2006.01792.xZoller, S. (2003). Slow algae, fast fungi: exceptionally high nucleotide substitution rate differences between lichenized fungi Omphalina and their symbiotic green algae Coccomyxa. Molecular Phylogenetics and Evolution, 29(3), 629-640. doi:10.1016/s1055-7903(03)00215-

    Role of the 4Kscore test as a predictor of reclassification in prostate cancer active surveillance

    Get PDF
    Background: Management of active surveillance (AS) in low-risk prostate cancer (PCa) patients could be improved with new biomarkers, such as the 4Kscore test. We analyze its ability to predict tumor reclassification by upgrading at the confirmatory biopsy at 6 months. Methods: Observational, prospective, blinded, and non-randomized study, within the Spanish National Registry on AS (AEU/PIEM/2014/0001; NCT02865330) with 181 patients included after initial Bx and inclusion criteria: PSA =10 ng/mL, cT1c-T2a, Grade group 1, =2 cores, and =5 mm/50% length core involved. Central pathological review of initial and confirmatory Bx was performed on all biopsy specimens. Plasma was collected 6 months after initial Bx and just before confirmatory Bx to determine 4Kscore result. In order to predict reclassification defined as Grade group =2, we analyzed 4Kscore, percent free to total (%f/t) PSA ratio, prostate volume, PSA density, family history, body mass index, initial Bx, total cores, initial Bx positive cores, initial Bx % of positive cores, initial Bx maximum cancer core length and initial Bx cancer % involvement. Wilcoxon rank-sum test, non-parametric trend test or Fisher’s exact test, as appropriate established differences between groups of reclassification. Results: A total of 137 patients met inclusion criteria. Eighteen patients (13.1%) were reclassified at confirmatory Bx. The %f/t PSA ratio and 4Kscore showed differences between the groups of reclassification (Yes/No). Using 7.5% as cutoff for the 4Kscore, we found a sensitivity of 89% and a specificity of 29%, with no reclassifications to Grade group 3 for patients with 4Kscore below 7.5% and 2 (6%) missed Grade group 2 reclassified patients. Using this threshold value there is a biopsy reduction of 27%. Additionally, 4Kscore was also associated with changes in tumor volume. Conclusions: Our preliminary findings suggest that the 4Kscore may be a useful tool in the decision-making process to perform a confirmatory Bx in active surveillance management

    Molecular and Morphological Diversity of Trebouxia Microalgae in Sphaerothalliod Circinaria spp. Lichens

    Full text link
    [EN] Three vagrant (Circinaria hispida, Circinaria gyrosa, Circinaria sp. `paramerae¿) and one crustose (semi-vagrant, Circinaria sp.`oromediterranea¿) growing in very continental areas in the Iberian Peninsula were selected to study the phycobiont diversity. Mycobiont identification was checked using nrITS DNA barcoding: Circinaria sp.`oromediterranea¿ and Circinaria sp. `paramerae¿ formed a new clade. Phycobiont diversity was analyzed in 50 thalli of Circinaria spp. using nrITS DNA and LSU rDNA, with microalgae coexistence being found in all the species analyzed by Sanger sequencing. The survey of phycobiont diversity showed up to four different Trebouxia spp. as the primary phycobiont in 20 thalli of C. hispida, in comparison with the remaining Circinaria spp. where only one Trebouxia was the primary microalga. In lichen species showing coexistence, some complementary approaches are needed (454 pyrosequencing and/or ultrastructural analyses). Five specimens were selected for HTS analyses: 22 Trebouxia OTUs were detected, ten of them not previously known. TEM analyses showed three different cell morphotypes (Trebouxia sp. OTU A12, OTU S51 and T. cretacea) whose ultrastructure is described here in detail for the first time, HTS revealed a different microalgae pool in each species studied, and we cannot assume a specific pattern between these pools and the ecological and/or morphological characteristics. The mechanisms involved in the selection of the primary phycobiont and the other microalgae by the mycobiont are unknown, and require complex experimental designs. The systematics of the genus Circinaria is not yet well resolved, and more analyses are needed to establish a precise delimitation of the species.Supported by the Ministerio de Economia y Competitividad (MINECO and FEDER, Spain; CGL2016-79158-P), Excellence in Research (Generalitat Valenciana, Spain; PROMETEO/2017/039). We want to thank the technicians (Ma Teresa Minguez and Nuria Cebrian) from the Servicio de Microscopia Electronica, SCSIE, and Jardi Botanic (Universitat de Valencia) who helped us to perform the TEM process, and Santiago Catala for the pyrosequencing analyses. Daniel Sheerin revised the English manuscript.Molins, A.; Moya, P.; García-Breijo, F.; Reig-Armiñana, J.; Barreno, E. (2018). Molecular and Morphological Diversity of Trebouxia Microalgae in Sphaerothalliod Circinaria spp. Lichens. Journal of Phycology. 54(4):494-504. https://doi.org/10.1111/jpy.12751S49450454

    La evolución de la simbiosis micorrícica

    Full text link
    [ES] El presente trabajo comenta la importancia de la relación entre plantas terrestres y bongos, describe brevcmente los distintos tipos de micorrizas que han ido coevolucionando can las plantas y muestra ejemplos de los diferentes tipos de micorrizas observados en cortes histológicos de raíces de vegetales, tanto primitivos, como es el caso de los helechos, como mas evolucionados las orquideas).[EN] The present word co mments the importance of the relationship between terrestrial plants and fungi, it also describes briefly the diffcren t types of mycorrhzae wich have been coevoling with the plants and shows examples of the different types of mycorrhizae observed in histological cutting of vegetal roots both primitive Gust like the case of ferns) and those more evolved (orchids).García-Breijo, F.; Reig Armiñana, J.; Ibars Almonacil, A.; Estrellés, E. (2002). La evolución de la simbiosis micorrícica. Butlletí Societat Micològica Valenciana. (7):49-54. http://hdl.handle.net/10251/104810S4954

    Aproximación al estudio anatomo histológico de la micorriza de Ophioglossum lusitanicum L

    Full text link
    [ES] Se describen, desde el punto de vista histológico, los diversos organos de 0. lusitanicum L., especie recientemente citada en la Comunidad Valenciana, y se hace especial hincapié en el estudio de su micorriza, que aparece claramente visible en sus raices )' que se ha identificado como un Zigomicete vesiculo - arbuscular. Este tipo de estudios son necesarios para abordar los procesos de conservacion de esta especie y reintroduccio n de la misma en los diferentes eco,istemas, ya que la micorrizacion es necesaria para ]a obtención de ejemplares a partir de esporas.[EN] Several organs of Ophhioglossum Lusitanicum L., a species recently found in the Valencian Community, are described here from histological point of view. Special emphasis was given to the study of its mycorrhizae that appears clearly visible in its roots. It was identified Vesiculararbuscular Zygomycete. Is necessary to approach this type of study to processes of conservation and reintroduction of this species in different ecosystems, since the mycorrhization is necessary to obtain specimens germinated from spores.Reig Armiñana, J.; García-Breijo, F.; Ibars Almonacil, A.; Estrellés, E. (2002). Aproximación al estudio anatomo histológico de la micorriza de Ophioglossum lusitanicum L. Butlletí Societat Micològica Valenciana. (7):55-60. http://hdl.handle.net/10251/106303S5560
    corecore