9 research outputs found

    Experimental confirmation of the low B isotope coefficient in MgB2

    Full text link
    Recent investigations have shown that the first proposed explanations of the disagreement between experimental and theoretical value of isotope coefficient in MgB2 need to be reconsidered. Considering that in samples with residual resistivity of few mu-Ohm cm critical temperature variations produced by disorder effects can be comparable with variations due to the isotopic effect, we adopt a procedure in evaluating the B isotope coefficient which take account of these effects, obtaining a value which is in agreement with previous results and then confirming that there is something still unclear in the physics of MgB2.Comment: 8 pages, 3 figures Title has been changed A statement has been added in page 7 of the pdf file "Finally we would..." Reference 21 has been added Figure 1 anf Figure 2 have been change

    Seebeck effect in the conducting LaAlO_{3}/SrTiO_{3} interface

    Full text link
    The observation of metallic behavior at the interface between insulating oxides has triggered worldwide efforts to shed light on the physics of these systems and clarify some still open issues, among which the dimensional character of the conducting system. In order to address this issue, we measure electrical transport (Seebeck effect, Hall effect and conductivity) in LaAlO_{3}/SrTiO_{3} interfaces and, for comparison, in a doped SrTiO_{3} bulk single crystal. In these experiments, the carrier concentration is tuned, using the field effect in a back gate geometry. The combined analysis of all experimental data at 77 K indicates that the thickness of the conducting layer is ~7 nm and that the Seebeck effect data are well described by a two-dimensional (2D) density of states. We find that the back gate voltage is effective in varying not only the charge density, but also the thickness of the conducting layer, which is found to change by a factor of ~2, using an electric field between -4 and +4MV/m at 77K. No enhancement of the Seebeck effect due to the electronic confinement and no evidence for two-dimensional quantization steps are observed at the interfaces.Comment: 15 pages, 5 figure

    Thermal conductivity of MgB2_{2} in the superconducting state

    Full text link
    We present thermal conductivity measurements on very pure and dense bulk samples, as indicated by residual resistivity values as low as 0.5 mW cm and thermal conductivity values higher than 200 W/mK. In the normal state we found that the Wiedemann Franz law, in its generalized form, works well suggesting that phonons do not contribute to the heat transport. The thermal conductivity in the superconducting state has been analysed by using a two-gap model. Thank to the large gap anisotropy we were able to evaluate quantitatively intraband scattering relaxation times of π\pi and σ\sigma bands, which depend on the disorder in different way; namely, as the disorder increases, it reduces more effectively the relaxation times of π\pi than of σ\sigma bands, as suggested by a recent calculation [1].Comment: 12 pages, 5 figure

    Magnetoresistivity in MgB2 as a probe of disorder in p- and s-bands

    Full text link
    In this paper we present normal state magnetoresistivity data of magnesium diboride epitaxial thin films with different levels of disorder, measured at 42K in magnetic fields up to 45 Tesla. Disorder was introduced in a controlled way either by means of neutron irradiation or by carbon doping. From a quantitative analysis of the magnetoresistivity curves with the magnetic field either parallel or perpendicular to the plane of the film, we extract the ratio of the scattering times in p- and s-bands. We demonstrate that the undoped unirradiated thin film has p scattering times smaller than s ones; upon irradiation, both bands become increasingly more disordered; eventually the highly irradiated sample (neutron fluence 7.7X1017 cm-2) and the C-doped sample have comparable scattering times in the two types of bands. This description of the effect of disorder in the two kinds of bands on transport is consistent with the residual resistivity values and with the temperature dependence of the resistivity.Comment: 19 pages, 3 tables, 2 figure
    corecore