18,005 research outputs found

    Electron-phonon coupling in the C60 fullerene within the many-body GW approach

    Full text link
    We study the electron-phonon coupling in the C60 fullerene within the first-principles GW approach, focusing on the lowest unoccupied t1u three-fold electronic state which is relevant for the superconducting transition in electron doped fullerides. It is shown that the strength of the coupling is significantly enhanced as compared to standard density functional theory calculations with (semi)local functionals, with a 48% increase of the electron-phonon potential Vep. The calculated GW value for the contribution from the Hg modes of 93 meV comes within 4% of the most recent experimental values. The present results call for a reinvestigation of previous density functional based calculations of electron-phonon coupling in covalent systems in general.Comment: 4 pages, 0 figur

    Finite-size scaling of directed percolation above the upper critical dimension

    Full text link
    We consider analytically as well as numerically the finite-size scaling behavior in the stationary state near the non-equilibrium phase transition of directed percolation within the mean field regime, i.e., above the upper critical dimension. Analogous to equilibrium, usual finite-size scaling is valid below the upper critical dimension, whereas it fails above. Performing a momentum analysis of associated path integrals we derive modified finite-size scaling forms of the order parameter and its higher moments. The results are confirmed by numerical simulations of corresponding high-dimensional lattice models.Comment: 4 pages, one figur

    Forces on Bins - The Effect of Random Friction

    Full text link
    In this note we re-examine the classic Janssen theory for stresses in bins, including a randomness in the friction coefficient. The Janssen analysis relies on assumptions not met in practice; for this reason, we numerically solve the PDEs expressing balance of momentum in a bin, again including randomness in friction.Comment: 11 pages, LaTeX, with 9 figures encoded, gzippe

    Finite-size scaling of directed percolation in the steady state

    Full text link
    Recently, considerable progress has been made in understanding finite-size scaling in equilibrium systems. Here, we study finite-size scaling in non-equilibrium systems at the instance of directed percolation (DP), which has become the paradigm of non-equilibrium phase transitions into absorbing states, above, at and below the upper critical dimension. We investigate the finite-size scaling behavior of DP analytically and numerically by considering its steady state generated by a homogeneous constant external source on a d-dimensional hypercube of finite edge length L with periodic boundary conditions near the bulk critical point. In particular, we study the order parameter and its higher moments using renormalized field theory. We derive finite-size scaling forms of the moments in a one-loop calculation. Moreover, we introduce and calculate a ratio of the order parameter moments that plays a similar role in the analysis of finite size scaling in absorbing nonequilibrium processes as the famous Binder cumulant in equilibrium systems and that, in particular, provides a new signature of the DP universality class. To complement our analytical work, we perform Monte Carlo simulations which confirm our analytical results.Comment: 21 pages, 6 figure

    Driven Pair Contact Process with Diffusion

    Full text link
    The pair contact process with diffusion (PCPD) has been recently investigated extensively, but its critical behavior is not yet clearly established. By introducing biased diffusion, we show that the external driving is relevant and the driven PCPD exhibits a mean-field-type critical behavior even in one dimension. In systems which can be described by a single-species bosonic field theory, the Galilean invariance guarantees that the driving is irrelevant. The well-established directed percolation (DP) and parity conserving (PC) classes are such examples. This leads us to conclude that the PCPD universality class should be distinct from the DP or PC class. Moreover, it implies that the PCPD is generically a multi-species model and a field theory of two species is suitable for proper description

    Spontaneous Symmetry Breaking in Directed Percolation with Many Colors: Differentiation of Species in the Gribov Process

    Full text link
    A general field theoretic model of directed percolation with many colors that is equivalent to a population model (Gribov process) with many species near their extinction thresholds is presented. It is shown that the multicritical behavior is always described by the well known exponents of Reggeon field theory. In addition this universal model shows an instability that leads in general to a total asymmetry between each pair of species of a cooperative society.Comment: 4 pages, 2 Postscript figures, uses multicol.sty, submitte

    Single-point velocity distribution in turbulence

    Full text link
    We show that the tails of the single-point velocity probability distribution function (PDF) are generally non-Gaussian in developed turbulence. By using instanton formalism for the Navier-Stokes equation, we establish the relation between the PDF tails of the velocity and those of the external forcing. In particular, we show that a Gaussian random force having correlation scale LL and correlation time τ\tau produces velocity PDF tails lnP(v)v4\ln{\cal P}(v)\propto-v^4 at vvrms,L/τv\gg v_{rms}, L/\tau. For a short-correlated forcing when τL/vrms\tau\ll L/v_{rms} there is an intermediate asymptotics lnP(v)v3\ln {\cal P}(v)\propto-v^3 at L/τvvrmsL/\tau\gg v\gg v_{rms}.Comment: 9 pages, revtex, no figure

    Cell-Type Specific Changes in Glial Morphology and Glucocorticoid Expression During Stress and Aging in the Medial Prefrontal Cortex.

    Get PDF
    Repeated exposure to stressors is known to produce large-scale remodeling of neurons within the prefrontal cortex (PFC). Recent work suggests stress-related forms of structural plasticity can interact with aging to drive distinct patterns of pyramidal cell morphological changes. However, little is known about how other cellular components within PFC might be affected by these challenges. Here, we examined the effects of stress exposure and aging on medial prefrontal cortical glial subpopulations. Interestingly, we found no changes in glial morphology with stress exposure but a profound morphological change with aging. Furthermore, we found an upregulation of non-nuclear glucocorticoid receptors (GR) with aging, while nuclear levels remained largely unaffected. Both changes are selective for microglia, with no stress or aging effect found in astrocytes. Lastly, we show that the changes found within microglia inversely correlated with the density of dendritic spines on layer III pyramidal cells. These findings suggest microglia play a selective role in synaptic health within the aging brain

    Crack fronts and damage in glass at the nanometer scale

    Full text link
    We have studied the low speed fracture regime for different glassy materials with variable but controlled length scales of heterogeneity in a carefully mastered surrounding atmosphere. By using optical and atomic force microscopy (AFM) techniques we tracked in real-time the crack tip propagation at the nanometer scale on a wide velocity range (mm/s - pm/s and below). The influence of the heterogeneities on this velocity is presented and discussed. Our experiments reveal also -for the first time- that the crack progresses through nucleation, growth and coalescence of nanometric damage cavities within the amorphous phase. This may explain the large fluctuations observed in the crack tip velocities for the smallest values. This behaviour is very similar to what is involved, at the micrometric scale, in ductile fracture. The only difference is very likely due to the related length scales (nanometric instead of micrometric). Consequences of such a nano-ductile fracture mode observed at a temperature far below the glass transition temperature in glass is finally discussed.Comment: 12 pages, 8 figures, submitted to Journal of Physics: Condensed Matter; Invited talk at Glass and Optical Materials Division Fall 2002 Meeting, Pittsburgh, Pa, US

    Bound q2qˉ2q^2\bar q^2 states in a constituent quark model

    Full text link
    We consider the existence of bound systems consisting of two quarks and two antiquarks (q2qˉ2q^2\bar q^2) within the framework of a constituent quark model. The underlying quark dynamics is described by a linear confinement potential and an effective q2qˉ2q^2\bar q^2 interaction which has its origin in instanton effects of QCD. We calculate the spectra and examine the internal structure of the states found.Comment: 11 pages, needs epsf.st
    corecore