26 research outputs found

    COMPLEMENT SYSTEM AS A MARKER OF IMMUNE DYSFUNCTION IN CHILDREN AUTISM SPECTRUM DISORDERS

    Get PDF
    It is known that functional activity of complement system depends not only on balance and concentration of components participating in formation of the system end products, but also on levels of inhibitory activities. Numerous relations with hemostasis also substantially contribute to general level of complement system activity. Changes in complement system functioning are inevitable during chronic diseases accompanied with immune system dysregulation. All mental diseases tend to be chronic and are they aggravated by patients’ immune system changes. Autism spectrum disorders in children is a group of mental disorders. Immune system dysregulation is usually detected in such patients, manifesting as excessive susceptibility to viral and bacterial infections. Therefore, the level of its functional activity is diagnostically and prognostically significant in this pathology, since the complement system is a key element of immune system.We have evaluated functional activity of complement system in patients with autistic spectrum disorders, using the method which was developed earlier. It is based on the reaction of the protozoa (Tetrahymena pyriformis) which are both targets and activators for the complement system. The complement system capacity (cSC) was used as the main parameter of complement evaluation. The half-time of protozoa survival (T50) was defined using the BioLat device for each serum specimen added at four concentrations (1/20, 1/40, 1/80, 1/160 dilution). The complement capacity was calculated as the area enclosed by influence curve of the reciprocals of T50 and the serum dilution. According to Mann–Whitney U test, the difference between patients’ and healthy volunteers’ groups was established as Z = 4.43 (by T50 at 1/160 dilution), p < 0.001 and by cSCas Z = 5.8, p < 0.001. cSC was calculated from the results obtained at each serum concentration measured. The difference between the two groups according to Mann–Whitney U test appeared to be more significant than the difference according to T50. Therefore, cSC was taken as the main characteristic of complement system function.The contribution of hemostasis plasma components to complement system functional activity level was estimated by determination of complement capacity in plasma and serum of each blood sample from 6 patients with autism spectrum disorders and 5 healthy donors. All healthy donors showed small difference between plasma and serum complement capacity, and their complement activity was higher in plasma. In patients’ group, the complement capacity levels in plasma and serum differed significantly. The cSC levels of two patients were higher in serum than in plasma, and the cSC levels of three other patients were significantly higher in plasma than in serum. Differential involvement of coagulation into the complement system activation may be indicative for the immune system dysfunction which is observed in patients with autistic spectrum disorders of different etiology

    A NEW METHOD TO ASSESS FUNCTIONAL ACTIVITY OF SERUM COMPLEMENT SYSTEM

    Get PDF
    Complement system is an important component of innate immunity, providing primary protection against pathogens invading the body. In addition, it was shown that the complement system is associated with many diseases, not only autoimmune and infectious, but also mental disorders. In this regard, it is necessary to develop affordable and fast method of measuring activity of the complement system in real-time mode. We present a new semi-automated method for assessment of serum complement activity. The assay is based on cytolytic action of complement system upon the ciliate organism Tetrahymena pyriformis. This method consists in repeated counting of live Tetrahymena motile cells by means of specially developed Biolat device, which consists of two video cameras, light sources, and movable round plate. The plate has two rows of holes. The device also includes microprocessor control unit based on AutoCiliata software, intended for control of operation module and counting the surviving cell. The calculations are based on fixation of two sequential video-frames, with subsequent software image processing. Cell death events were observed upon incubation in triethanolamine (TEA) buffer containing 5% of blood serum. We have also compared complement activity in different buffers, i.e., standard medium for culturing of ciliates, Veronal-Medinalum buffer, and the TEA buffer. TEA buffer was found superior to the Veronal buffer when applied in the test system. The time of cell death in the TEA-buffered medium containing 5% serum was < 15 minutes for all the sera studied. The parameters denoting serum complement activity were as follows: a half-life time for the moving cells (TLD50), and a similar value for 100% cell inactivation (1/TLD50, functional activity of the complement system, ACS). The sensitivity of this assay was calculated from dependencies between TLD50 and ACS, and actual serum concentrations. We have suggested an opportunity for evaluation of an integral complement activity, and interrelations between the intensity of synthesis and consumption of its major effector proteins. In the course of this study, we have tested different concentrations of Ca++ and Mg++ ions in the incubation buffer, with optimal physiological concentrations of2.5 mMand1.5 mM, respectively. We have also estimated statistical precision characteristics for pre-analytical and analytical steps of the method. The average coefficients of variation (CV) were 3.9% and 2.7%, respectively, thus satisfying the reliability criteria in research. A short performance time of the study suggests its potential application in clinical practice, including online examination regimens. A method for semi-automatic measurement of serum complement activity could be applicable in daily clinical practice, including the online performance

    Ground-based acoustic parametric generator impact on the atmosphere and ionosphere in an active experiment

    Get PDF
    We develop theoretical basics of active experiments with two beams of acoustic waves, radiated by a ground-based sound generator. These beams are transformed into atmospheric acoustic gravity waves (AGWs), which have parameters that enable them to penetrate to the altitudes of the ionospheric E and F regions where they influence the electron concentration of the ionosphere. Acoustic waves are generated by the ground-based parametric sound generator (PSG) at the two close frequencies. The main idea of the experiment is to design the output parameters of the PSG to build a cascade scheme of nonlinear wave frequency downshift transformations to provide the necessary conditions for their vertical propagation and to enable penetration to ionospheric altitudes. The PSG generates sound waves (SWs) with frequencies f1 = 600 and f2 = 625 Hz and large amplitudes (100-420ms-1). Each of these waves is modulated with the frequency of 0.016 Hz. The novelty of the proposed analytical-numerical model is due to simultaneous accounting for nonlinearity, diffraction, losses, and dispersion and inclusion of the two-stage transformation (1) of the initial acoustic waves to the acoustic wave with the difference frequency Δf = f2 - f1 in the altitude ranges 0-0.1 km, in the strongly nonlinear regime, and (2) of the acoustic wave with the difference frequency to atmospheric acoustic gravity waves with the modulational frequency in the altitude ranges 0.1-20 km, which then reach the altitudes of the ionospheric E and F regions, in a practically linear regime. AGWs, nonlinearly transformed from the sound waves, launched by the two-frequency ground-based sound generator can increase the transparency of the ionosphere for the electromagnetic waves in HF (MHz) and VLF (kHz) ranges. The developed theoretical model can be used for interpreting an active experiment that includes the PSG impact on the atmosphere-ionosphere system, measurements of electromagnetic and acoustic fields, study of the variations in ionospheric transparency for the radio emissions from galactic radio sources, optical measurements, and the impact on atmospheric aerosols. The proposed approach can be useful for better understanding the mechanism of the acoustic channel of seismo-ionospheric coupling

    The MHD nature of ionospheric wave packets excited by the solar terminator

    Full text link
    We obtained the first experimental evidence for the magnetohydrodynamic (MHD) nature of ionospheric medium-scale travelling wave packets (MSTWP). We used data on total electron content (TEC) measurements obtained at the dense Japanese network GPS/GEONET (1220 stations) in 2008-2009. We found that the diurnal, seasonal and spectral MSTWP characteristics are specified by the solar terminator (ST) dynamics. MSTWPs are the chains of narrow-band TEC oscillations with single packet's duration of about 1-2 hours and oscillation periods of 10-20 minutes. Their total duration is about 4--6 hours. The MSTWP spatial structure is characterized by a high degree of anisotropy and coherence at the distance of more than 10 wavelengths. The MSTWP direction of travelling is characterized by a high directivity regardless of seasons. Occurrence rate of daytime MSTWPs is high in winter and during equinoxes. Occurrence rate of nighttime MSTIDs has its peak in summer. These features are consistent with previous MS travelling ionosphere disturbance (TID) statistics obtained from 630-nm airglow imaging observations in Japan. In winter, MSTWPs in the northern hemisphere are observed 3-4 hours after the morning ST passage. In summer, MSTWPs are detected 1.5-2 hours before the evening ST occurrence at the point of observations, at the moment of the evening ST passage in the magneto-conjugate point. Both the high Q-factor of oscillatory system and synchronization of MSTWP occurrence with the solar terminator passage at the point of observations and in the magneto-conjugate area testify the MHD nature of ST-excited MSTWP generation. The obtained results are the first experimental evidence for the hypothesis of the ST-generated ion sound waves.Comment: 12 pages, 3 figure
    corecore