6,828 research outputs found

    Fisheries bioecology at the Khone Falls (Mekong River, Southern Laos)

    Get PDF
    This CD-ROM contains full database of the "Khone Fall fisheries database" and detailed analyses done in the companion report "Ecological studies of fish in the Khone Falls area (Mekong River, Southern Lao PDR).Fisheries, Ecology, Mekong River, Laos,

    High Temperature, Low Relative Humidity, Polymer-type Membranes Based on Disulfonated Poly(arylene ether) Block and Random Copolymers Optionally Incorporating Protonic Conducting Layered Water insoluble Zirconium Fillers

    Get PDF
    Our research group has been engaged in the past few years in the synthesis of biphenol based partially disulfonated poly(arylene ether sulfone) random copolymers as potential PEMs. This series of polymers are named as BPSH-xx, where BP stands for biphenol, S stands for sulfonated, H stands for acidified and xx represents the degree of disulfonation. All of these sulfonated copolymers phase separate to form nano scale hydrophilic and hydrophobic morphological domains. The hydrophilic phase containing the sulfonic acid moieties causes the copolymer to absorb water. Water confined in hydrophilic pores in concert with the sulfonic acid groups serve the critical function of proton (ion) conduction and water transport in these systems. Both Nafion and BPSH show high proton conductivity at fully hydrated conditions. However proton transport is especially limited at low hydration level for the BPSH random copolymer. It has been observed that the diffusion coefficients of both water and protons change with the water content of the pore. This change in proton and water transport mechanisms with hydration level has been attributed to the solvation of the acid groups and the amount of bound and bulk-like water within a pore. At low hydration levels most of the water is tightly associated with sulfonic groups and has a low diffusion coefficient. This tends to encourage isolated domain morphology. Thus, although there may be significant concentrations of protons, the transport is limited by the discontinuous morphological structure. Hence the challenge lies in how to modify the chemistry of the polymers to obtain significant protonic conductivity at low hydration levels. This may be possible if one can alter the chemical structure to synthesize nanophase separated ion containing block copolymers. Unlike the BPSH copolymers, where the sulfonic acid groups are randomly distributed along the chain, the multiblock copolymers will feature an ordered sequence of hydrophilic and hydrophobic segments. If, like in Nafion, connectivity is established between the hydrophilic domains in these multiblock copolymers, they will not need as much water, and hence will show much better protonic conductivity than the random copolymers (with similar degree of sulfonation, or IEC) at partially hydrated conditions. The goal of this research is to develop a material suitable for use as a polymer electrolyte membrane which by the year 2010 will meet all the performance requirements associated with fuel cell operation at high temperatures and low relative humidity, and will out-perform the present standard Nafion{reg_sign}. In particular, it is our objective to extend our previous research based on the use of thermally, oxidatively, and hydrolytically, ductile, high Tg ion containing polymers based on poly(arylene ethers) to the production of polymer electrolyte membranes which will meet all the performance requirements in addition to having an areal resistance of < 0.05 ohm-cm{sup 2} at a temperature of up to 120 C, relative humidity of 25 to 50%, and up to 2.5 atm total pressure. In many instances, our materials already out performs Nafion{reg_sign}, and it is expected that with some modification by either combining with conductive inorganic fillers and/or synthesizing as a block copolymer it will meet the performance criteria at high temperatures and low relative humidity. A key component in improving the performance of the membranes (and in particular proton conductivity) and meeting the cost requirements of $40/m{sup 2} is our development of a film casting process, which shows promise for generation of void free thin films of uniform thickness with controlled polymer alignment and configuration

    A Method for Quantitative Analysis of Standard and High-Throughput qPCR Expression Data Based on Input Sample Quantity

    Get PDF
    Over the past decade rapid advances have occurred in the understanding of RNA expression and its regulation. Quantitative polymerase chain reactions (qPCR) have become the gold standard for quantifying gene expression. Microfluidic next generation, high throughput qPCR now permits the detection of transcript copy number in thousands of reactions simultaneously, dramatically increasing the sensitivity over standard qPCR. Here we present a gene expression analysis method applicable to both standard polymerase chain reactions (qPCR) and high throughput qPCR. This technique is adjusted to the input sample quantity (e.g., the number of cells) and is independent of control gene expression. It is efficiency-corrected and with the use of a universal reference sample (commercial complementary DNA (cDNA)) permits the normalization of results between different batches and between different instruments – regardless of potential differences in transcript amplification efficiency. Modifications of the input quantity method include (1) the achievement of absolute quantification and (2) a non-efficiency corrected analysis. When compared to other commonly used algorithms the input quantity method proved to be valid. This method is of particular value for clinical studies of whole blood and circulating leukocytes where cell counts are readily available

    Provenance and recycling of Sahara Desert sand

    Get PDF
    We here present the first comprehensive provenance study of the Sahara Desert using a combination of multiple provenance proxies and state-of-the-art statistical analysis. Our dataset comprises 44 aeolian-dune samples, collected across the region from 12°N (Nigeria) to 34°N (Tunisia) and from 33°E (Egypt) to 16°W (Mauritania) and characterized by bulk-petrography, heavy-mineral, and detrital-zircon Usingle bondPb geochronology analyses. A set of statistical tools including Multidimensional Scaling, Correspondence Analysis, Individual Difference Scaling, and General Procrustes Analysis was applied to discriminate among sample groups with the purpose to reveal meaningful compositional patterns and infer sediment transport pathways on a geological scale. The overall homogenity across sand samples, however, precluded a detailed narrative. Saharan dune fields are, with a few local exceptions, composed of pure quartzose sand with very poor heavy-mineral suites dominated by durable zircon, tourmaline, and rutile. Some feldspars, amphibole, epidote, garnet, or staurolite occur closer to basement exposures, and carbonate grains, clinopyroxene and olivine near a basaltic field in Libya. Relatively varied compositions also characterize sand along the Nile Valley and the southern front of the Anti-Atlas fold belt in Morocco. Otherwise, from the Sahel to the Mediterranean Sea and from the Nile River to the Atlantic Ocean, sand consists nearly exclusively of quartz and durable minerals. These have been concentrated through multiple cycles of erosion, deposition, and diagenesis of Phanerozoic siliciclastic rocks during the long period of relative tectonic quiescence that followed the Neoproterozoic Pan-African orogeny, the last episode of major crustal growth in the region. The principal ultimate source of recycled sand is held to be represented by the thick blanket of quartz-rich sandstones that were deposited in the Cambro-Ordovician from the newly formed Arabian-Nubian Shield in the east to Mauritania in the west. Durability of zircon grains and their likelihood to be recycled from older sedimentary rocks argues against the assumption, too often implicitly taken for granted in provenance studies based on detrital-zircon ages, that their age distribution reflects transport pathways existing at the time of deposition rather than inheritance from multiple and remote landscapes of the past

    Representations of the Canonical group, (the semi-direct product of the Unitary and Weyl-Heisenberg groups), acting as a dynamical group on noncommuting extended phase space

    Full text link
    The unitary irreducible representations of the covering group of the Poincare group P define the framework for much of particle physics on the physical Minkowski space P/L, where L is the Lorentz group. While extraordinarily successful, it does not provide a large enough group of symmetries to encompass observed particles with a SU(3) classification. Born proposed the reciprocity principle that states physics must be invariant under the reciprocity transform that is heuristically {t,e,q,p}->{t,e,p,-q} where {t,e,q,p} are the time, energy, position, and momentum degrees of freedom. This implies that there is reciprocally conjugate relativity principle such that the rates of change of momentum must be bounded by b, where b is a universal constant. The appropriate group of dynamical symmetries that embodies this is the Canonical group C(1,3) = U(1,3) *s H(1,3) and in this theory the non-commuting space Q= C(1,3)/ SU(1,3) is the physical quantum space endowed with a metric that is the second Casimir invariant of the Canonical group, T^2 + E^2 - Q^2/c^2-P^2/b^2 +(2h I/bc)(Y/bc -2) where {T,E,Q,P,I,Y} are the generators of the algebra of Os(1,3). The idea is to study the representations of the Canonical dynamical group using Mackey's theory to determine whether the representations can encompass the spectrum of particle states. The unitary irreducible representations of the Canonical group contain a direct product term that is a representation of U(1,3) that Kalman has studied as a dynamical group for hadrons. The U(1,3) representations contain discrete series that may be decomposed into infinite ladders where the rungs are representations of U(3) (finite dimensional) or C(2) (with degenerate U(1)* SU(2) finite dimensional representations) corresponding to the rest or null frames.Comment: 25 pages; V2.3, PDF (Mathematica 4.1 source removed due to technical problems); Submitted to J.Phys.

    Static solitons with non-zero Hopf number

    Get PDF
    We investigate a generalized non-linear O(3) σ\sigma-model in three space dimensions where the fields are maps S3S2S^3 \mapsto S^2. Such maps are classified by a homotopy invariant called the Hopf number which takes integer values. The model exhibits soliton solutions of closed vortex type which have a lower topological bound on their energies. We explicitly compute the fields for topological charge 1 and 2 and discuss their shapes and binding energies. The effect of an additional potential term is considered and an approximation is given for the spectrum of slowly rotating solitons.Comment: 13 pages, RevTeX, 7 Postscript figures, minor changes have been made, a reference has been corrected and a figure replace
    corecore