102,473 research outputs found
On the frequency and transmitted chromosome alterations and gene mutations induced by atomic bomb radiations in maize
Samples of maize seed of the single cross L289 X I205 were placed on some of the ships within the target area at Bikini at the time of the atomic bomb test of July 1, 1946. At about the same time Dr. L. F. Randolph exposed duplicate samples to x-rays at Cornell University. Plantings were made at the California Institute of Technology of both series together with untreated controls. From these plants, sporocyte samples were collected by Dr. Randolph for studies at Cornell University on the visible chromosomal changes induced by the radiations (Randolph, Longley and Li in press). Studies on hereditary effects have been carried on at the California Institute of Technology in cooperation with the United States Department of Agriculture and the Naval Medical Research Section of Operation Crossroads
Modelling of physical influences in sea level records for vertical crustal movement detection
Attempts to specify and evaluate such physical influences are reviewed with the intention of identifying problem areas and promising approaches. An example of linear modelling based on air/water temperatures, atmospheric pressure, river discharges, geostrophic and/or local wind velocities, and including forced period terms to allow for the long period tides and Chandlerian polar motion is evaluated and applied to monthly mean sea levels recorded in Atlantic Canada. Refinement of the model to admit phase lag in the response to some of the driving phenomena is demonstrated. Spectral analysis of the residuals is employed to assess the model performance. The results and associated statistical parameters are discussed with emphasis on elucidating the sensitivity of the technique for detection of local episodic and secular vertical crustal movements, the problem areas most critical to the type of approach, and possible further developments
Constraining coherent low frequency radio flares from compact binary mergers
The presence and detectability of coherent radio emission from compact binary
mergers (containing at least one neutron star) remains poorly constrained due
to large uncertainties in the models. These compact binary mergers may
initially be detected as Short Gamma-ray Bursts (SGRBs) or via their
gravitational wave emission. Several radio facilities have developed rapid
response modes enabling them to trigger on these events and search for this
emission. For this paper, we constrain this coherent radio emission using the
deepest available constraints for GRB 150424A, which were obtained via a
triggered observation with the Murchison Widefield Array. We then expand this
analysis to determine the properties of magnetar merger remnants that may be
formed via a general population of binary neutron star mergers. Our results
demonstrate that many of the potential coherent emission mechanisms that have
been proposed for such events can be detected or very tightly constrained by
the complementary strategies used by the current generation of low-frequency
radio telescopes.Comment: 19 pages, submitted to MNRA
A numerical study of forced lithospheric thinning
Subsolidus lithospheric thinning by mantle plumes may be involved in the creation of swells, hotspots, and rifts. Among the major questions concerning this process are the timescale on which it occurs and the structure of the plumes. The lithosphere is known to have been substantially thinned in 10 Ma or less. Current studies are focused on the lithospheric thinning by time-dependent plumes hypothesized to have large temperature differences across them
Foundations of Relational Particle Dynamics
Relational particle dynamics include the dynamics of pure shape and cases in
which absolute scale or absolute rotation are additionally meaningful. These
are interesting as regards the absolute versus relative motion debate as well
as discussion of conceptual issues connected with the problem of time in
quantum gravity. In spatial dimension 1 and 2 the relative configuration spaces
of shapes are n-spheres and complex projective spaces, from which knowledge I
construct natural mechanics on these spaces. I also show that these coincide
with Barbour's indirectly-constructed relational dynamics by performing a full
reduction on the latter. Then the identification of the configuration spaces as
n-spheres and complex projective spaces, for which spaces much mathematics is
available, significantly advances the understanding of Barbour's relational
theory in spatial dimensions 1 and 2. I also provide the parallel study of a
new theory for which positon and scale are purely relative but orientation is
absolute. The configuration space for this is an n-sphere regardless of the
spatial dimension, which renders this theory a more tractable arena for
investigation of implications of scale invariance than Barbour's theory itself.Comment: Minor typos corrected; references update
New interpretation of variational principles for gauge theories. I. Cyclic coordinate alternative to ADM split
I show how there is an ambiguity in how one treats auxiliary variables in
gauge theories including general relativity cast as 3 + 1 geometrodynamics.
Auxiliary variables may be treated pre-variationally as multiplier coordinates
or as the velocities corresponding to cyclic coordinates. The latter treatment
works through the physical meaninglessness of auxiliary variables' values
applying also to the end points (or end spatial hypersurfaces) of the
variation, so that these are free rather than fixed. [This is also known as
variation with natural boundary conditions.] Further principles of dynamics
workings such as Routhian reduction and the Dirac procedure are shown to have
parallel counterparts for this new formalism. One advantage of the new scheme
is that the corresponding actions are more manifestly relational. While the
electric potential is usually regarded as a multiplier coordinate and Arnowitt,
Deser and Misner have regarded the lapse and shift likewise, this paper's
scheme considers new {\it flux}, {\it instant} and {\it grid} variables whose
corresponding velocities are, respectively, the abovementioned previously used
variables. This paper's way of thinking about gauge theory furthermore admits
interesting generalizations, which shall be provided in a second paper.Comment: 11 page
From an axiological standpoint
I maintain that intrinsic value is the fundamental concept of axiology. Many contemporary philosophers disagree; they say the proper object of value theory is final value. I examine three accounts of the nature of final value: the first claims that final value is non‐instrumental value; the second claims that final value is the value a thing has as an end; the third claims that final value is ultimate or non‐derivative value. In each case, I argue that the concept of final value described is either identical with the classical notion of intrinsic value or is not a plausible candidate for the primary concept of axiology
Quantum Cosmological Relational Model of Shape and Scale in 1-d
Relational particle models are useful toy models for quantum cosmology and
the problem of time in quantum general relativity. This paper shows how to
extend existing work on concrete examples of relational particle models in 1-d
to include a notion of scale. This is useful as regards forming a tight analogy
with quantum cosmology and the emergent semiclassical time and hidden time
approaches to the problem of time. This paper shows furthermore that the
correspondence between relational particle models and classical and quantum
cosmology can be strengthened using judicious choices of the mechanical
potential. This gives relational particle mechanics models with analogues of
spatial curvature, cosmological constant, dust and radiation terms. A number of
these models are then tractable at the quantum level. These models can be used
to study important issues 1) in canonical quantum gravity: the problem of time,
the semiclassical approach to it and timeless approaches to it (such as the
naive Schrodinger interpretation and records theory). 2) In quantum cosmology,
such as in the investigation of uniform states, robustness, and the qualitative
understanding of the origin of structure formation.Comment: References and some more motivation adde
The role of phase dynamics in a stochastic model of a passively advected scalar
Collective synchronous motion of the phases is introduced in a model for the
stochastic passive advection-diffusion of a scalar with external forcing. The
model for the phase coupling dynamics follows the well known Kuramoto model
paradigm of limit-cycle oscillators. The natural frequencies in the Kuramoto
model are assumed to obey a given scale dependence through a dispersion
relation of the drift-wave form , where is a
constant representing the typical strength of the gradient. The present aim is
to study the importance of collective phase dynamics on the characteristic time
evolution of the fluctuation energy and the formation of coherent structures.
Our results show that the assumption of a fully stochastic phase state of
turbulence is more relevant for high values of , where we find that the
energy spectrum follows a scaling. Whereas for lower there
is a significant difference between a-synchronised and synchronised phase
states, and one could expect the formation of coherent modulations in the
latter case.Comment: Accepted for publication in Physics of Plasma
- …