978 research outputs found

    Excess gamma-rays in the direction of the rho Ophiuchi cloud: An exotic object?

    Get PDF
    The COS-B X-ray data in the direction of the rho Oph dark cloud show an extended structure; at the same time, the region of highest intensity has a spatial distribution compatible with a localized source; 2CG353+16 which is designated Oph gamma. The possibility of an excess gamma ray flux over what is expected on the basis of the interaction of average density cosmic rays with an estimated cloud mass of 2 to 4 000 M is still open, pending an extended CO survey matching the gamma ray data. Estimates for this excess factor are in the range 2 to 4. While the cloud mass may be underestimated, it should be noted that an excess of the same order appears to be present in the nearby Oph-Sag area, well surveyed in CO with the Columbia dish. Possible reasons for a gamma ray excess, in view of two recent observational developments: an Einstein X-ray survey and a VLA radio survey, both covering the approx 2 deg diameter Oph gamma error box. Current interpretations link the gamma ray excess to the cloud gas, in which some active agent is present: stellar winds, or interaction with the North Polar Spur

    A Simultaneous Optical and X-ray Variability Study of the Orion Nebula Cluster. II. A Common Origin in Magnetic Activity

    Get PDF
    We present a statistical analysis of simultaneous optical and X-ray light curves, spanning 600 ks, for 814 pre-main-sequence (PMS) stars in the Orion Nebula Cluster. The aim of this study is to establish the relationship, if any, between the sites of optical and X-ray variability, and thereby to elucidate the origins of X-ray production in PMS stars. In a previous paper we showed that optical and X-ray variability in PMS stars are very rarely time-correlated. Here, using time-averaged variability indicators to examine the joint occurrences of optical and X-ray variability, we confirm that the two forms of variability are not directly causally related. However, a strong and highly statistically significant correlation is found between optical variability and X-ray luminosity. As this correlation is found to be independent of accretion activity, we argue that X-ray production in PMS stars must instead be intimately connected with the presence and strength of optically variable, magnetically active surface regions (i.e. spots) on these stars. Moreover, because X-ray variability and optical variability are rarely time-correlated, we conclude that the sites of X-ray production are not exclusively co-spatial with these regions. We argue that solar-analog coronae, heated by topologically complex fields, can explain these findings.Comment: To appear in the Astrophysical Journal. 33 pages, 3 figure

    X-ray inverse Compton emission from the radio halo of M87

    Get PDF
    A significant fraction of known galaxies contain an active galactic nucleus (AGN) at their cores, the site of violent activity and non-stellar radiation seen across the entire electromagnetic spectrum. This activity is thought to be due to the accretion of gas onto a massive black hole. A fraction of AGNs also eject collimated beams of energetic material, usually seen by virtue of its synchrotron emission in the radio band. Efforts to study these jets from AGNs in the X-ray band with the Einstein Observatory has led to several detections, most notably the jets in the nearby radio galaxies Centaurus A and Virgo A = M87. In their study of M87, Schreier, Gorenstein and Feigelson (1982) noted that, in addition to the synchrotron jet 10"-20" from the nucleus, X-rays appear to be generated in the diffuse radio halo 2'-5' from the nucleus. This finding may be particularly important as it may constitute the first known case of X-ray inverse Compton emission from AGN ejecta, allowing for the first time direct determination of the magnetic field strengths

    Gaia Stellar Kinematics in the Head of the Orion A Cloud: Runaway Stellar Groups and Gravitational Infall

    Get PDF
    This work extends previous kinematic studies of young stars in the Head of the Orion A cloud (OMC-1/2/3/4/5). It is based on large samples of infrared, optical, and X-ray selected pre-main sequence stars with reliable radial velocities and Gaia-derived parallaxes and proper motions. Stellar kinematic groups are identified assuming they mimic the motion of their parental gas. Several groups are found to have peculiar kinematics: the NGC 1977 cluster and two stellar groups in the Extended Orion Nebula (EON) cavity are caught in the act of departing their birthplaces. The abnormal motion of NGC 1977 may have been caused by a global hierarchical cloud collapse, feedback by massive Ori OB1ab stars, supersonic turbulence, cloud-cloud collision, and/or slingshot effect; the former two models are favored by us. EON groups might have inherited anomalous motions of their parental cloudlets due to small-scale `rocket effects' from nearby OB stars. We also identify sparse stellar groups to the east and west of Orion A that are drifting from the central region, possibly a slowly expanding halo of the Orion Nebula Cluster. We confirm previously reported findings of varying line-of-sight distances to different parts of the cloud's Head with associated differences in gas velocity. Three-dimensional movies of star kinematics show contraction of the groups of stars in OMC-1 and global contraction of OMC-123 stars. Overall, the Head of Orion A region exhibits complex motions consistent with theoretical models involving hierarchical gravitational collapse in (possibly turbulent) clouds with OB stellar feedback.Comment: Accepted for publication in MNRAS. 26 pages, 13 figures. The two 3-D stellar kinematic movies, aimed as Supplementary Materials, can be found on YouTube at: https://youtu.be/B4GHCVvCYfo (`restricted' sample) and https://youtu.be/6fUu8sP0QFI (`full' sample

    Two component model for X-ray emission of radio selected QSO's

    Get PDF
    Using a large database of radio, optical, and x ray luminosities of AGNs with survival analysis, it was found that the x ray emission of the radio selected quasars has two components. One is related to the optical luminosity and the other is related to the radio luminosity
    corecore