205 research outputs found

    Capillary wave turbulence on a spherical fluid surface in low gravity

    Get PDF
    We report the observation of capillary wave turbulence on the surface of a fluid layer in a low-gravity environment. In such conditions, the fluid covers all the internal surface of the spherical container which is submitted to random forcing. The surface wave amplitude displays power-law spectrum over two decades in frequency, corresponding to wavelength from mmmm to a few cmcm. This spectrum is found in roughly good agreement with wave turbulence theory. Such a large scale observation without gravity waves has never been reached during ground experiments. When the forcing is periodic, two-dimensional spherical patterns are observed on the fluid surface such as subharmonic stripes or hexagons with wavelength satisfying the capillary wave dispersion relation

    Observation of gravity-capillary wave turbulence

    Get PDF
    We report the observation of the cross-over between gravity and capillary wave turbulence on the surface of mercury. The probability density functions of the turbulent wave height are found to be asymmetric and thus non Gaussian. The surface wave height displays power-law spectra in both regimes. In the capillary region, the exponent is in fair agreement with weak turbulence theory. In the gravity region, it depends on the forcing parameters. This can be related to the finite size of the container. In addition, the scaling of those spectra with the mean energy flux is found in disagreement with weak turbulence theory for both regimes

    A numerical model of the VKS experiment

    Full text link
    We present numerical simulations of the magnetic field generated by the flow of liquid sodium driven by two counter-rotating impellers (VKS experiment). Using a dynamo kinematic code in cylindrical geometry, it is shown that different magnetic modes can be generated depending on the flow configuration. While the time averaged axisymmetric mean flow generates an equatorial dipole, our simulations show that an axial field of either dipolar or quadrupolar symmetry can be generated by taking into account non-axisymmetric components of the flow. Moreover, we show that by breaking a symmetry of the flow, the magnetic field becomes oscillatory. This leads to reversals of the axial dipole polarity, involving a competition with the quadrupolar component.Comment: 6 pages, 5 figure

    Chaotic magnetic field reversals in turbulent dynamos

    Full text link
    We present direct numerical simulations of reversals of the magnetic field generated by swirling flows in a spherical domain. In agreement with a recent model, we observe that coupling dipolar and quadrupolar magnetic modes by an asymmetric forcing of the flow generates field reversals. In addition, we show that this mechanism strongly depends on the value of the magnetic Prandtl number.Comment: 4 pages, 5 figure

    Observation of intermittency in wave turbulence

    Get PDF
    We report the observation of intermittency in gravity-capillary wave turbulence on the surface of mercury. We measure the temporal fluctuations of surface wave amplitude at a given location. We show that the shape of the probability density function of the local slope increments of the surface waves strongly changes across the time scales. The related structure functions and the flatness are found to be power laws of the time scale on more than one decade. The exponents of these power laws increase nonlinearly with the order of the structure function. All these observations show the intermittent nature of the increments of the local slope in wave turbulence. We discuss the possible origin of this intermittency.Comment: new version to Phys. Rev. Let

    A simple mechanism for the reversals of Earth's magnetic field

    Full text link
    We show that a model, recently used to describe all the dynamical regimes of the magnetic field generated by the dynamo effect in the VKS experiment [1], also provides a simple explanation of the reversals of Earth's magnetic field, despite strong differences between both systems.Comment: update version, with new figure

    Convective Motion in a Vibrated Granular Layer

    Full text link
    Experimental results are presented for a vertically shaken granular layer. In the range of accelerations explored, the layer develops a convective motion in the form of one or more rolls. The velocity of the grains near the wall has been measured. It grows linearly with the acceleration, then the growing rate slows down. A rescaling with the amplitude of the wall velocity and the height of the granular layer makes all data collapse in a single curve. This can provide insights on the mechanism driving the motion.Comment: 10 pages, 5 figures submitted to Phys. Rev. Let

    ITER LHe Plants Parallel Operation

    Get PDF
    AbstractThe ITER Cryogenic System includes three identical liquid helium (LHe) plants, with a total average cooling capacity equivalent to 75kW at 4.5K.The LHe plants provide the 4.5 K cooling power to the magnets and cryopumps. They are designed to operate in parallel and to handle heavy load variations.In this proceedingwe will describe the presentstatusof the ITER LHe plants with emphasis on i) the project schedule, ii) the plantscharacteristics/layout and iii) the basic principles and control strategies for a stable operation of the three LHe plants in parallel
    corecore