161 research outputs found

    ¿RE-DISCOVERING¿ AN OLD MATERIAL, POLYANILINE, FOR MODERN APPLICATIONS

    Get PDF
    The chemical industry of the forthcoming years will be shaped by a number of emerging global megatrends strictly related to the growth and aging of the world population (nine billion people in 2050). This will result in demand of innovative materials able to solve new needs in different fields: health, communication, energy, environmental sustainability, etc. In this diversified context, conducting organic polymers (COPs) are expected to play an important role thanks to their polyhedric properties. Among them, polyaniline is one of the more investigated COPs owing to its peculiar properties which make it a potential substitute of conventional materials in different fields (electronics, fenestration, textile industry, sensors and many others). However, to date many aspects related to its synthesis and application are still open. Scope of the present work is to provide alternative eco-friendly methods to the traditional synthetic routes towards PANI-based materials and enlarge their present applications in view of the novel requirements. This study has been organized in three main sections. In the first section a new green protocol will be present to prepare PANI/metal oxides nanocomposites, innovative materials in the field of EMI shielding. For the first time the double role of magnetic nanoparticles, as catalysts of the reaction and magnetic fillers of the final products, will be illustrated. Conducting/magnetic materials are particularly tempting for their ability to reduce the electromagnetic interferences (EMI) originated by the increasing use of electronic devices and telecommunication equipment. Preliminary results in terms of their microwave absorbing properties will be shown. The possibility to improve the health and quality of life for millions of people worldwide is, in fact, the overall goal of tissue engineering. Nanostructured PANI in form of fibers or wires could find application as novel conductive scaffolds in neuronal or cardiac stimulations. In the second section, the possibility to produce highly pure polyaniline nanofibers by electrospinning technique will be showed. These materials, characterized by high values of conductivity and cytocompatibility, could represent an alternative to traditional solutions for cardiac and neuronal stimulation. Regarding the third section of the work, the amazing piezoresistive properties of PANI, especially in form of film, will be for the first time herein presented. Herein, the extraordinary high GF values of PANI-based films (more than 10 times higher than those of commercial piezoresistors) will be reported. The mechanical monitoring in large and small scale (buildings/touch-technology) needs of highly sensitive stress/strains sensors and PANI-based materials are particularly promising in this sector. All these characteristics contribute to make PANI and its composites innovative materials which could offer new solutions for many challenges of the future

    Triply green polyaniline: UV irradiation-induced synthesis of highly porous PANI/TiO2 composite and its application in dye removal

    Get PDF
    An environmentally benign procedure for the preparation of polyaniline/TiO2 composites is presented. The UV irradiation-induced synthesis leads to materials with good crystallinity and tailored morphology, showing promising sorption and recycle properties in dye removal tests. A reaction mechanism is proposed on the basis of LC-MS and FT-IR investigations

    Photocatalytic and oxidative synthetic pathways for highly efficient PANI-TIO2 nanocomposites as organic and inorganic pollutant sorbents

    Get PDF
    Polyaniline (PANI)-materials have recently been proposed for environmental remediation applications thanks to PANI stability and sorption properties. As an alternative to conventional PANI oxidative syntheses, which involve toxic carcinogenic compounds, an eco-friendly procedure was here adopted starting from benign reactants (aniline-dimer and H2O2) and initiated by ultraviolet (UV)-irradiated TiO2. To unlock the full potential of this procedure, we investigated the roles of TiO2 and H2O2 in the nanocomposites synthesis, with the aim of tailoring the properties of the final material to the desired application. The nanocomposites prepared by varying the TiO2:H2O2:aniline-dimer molar ratios were characterized for their thermal, optical, morphological, structural and surface properties. The reaction mechanism was investigated via mass analyses and X-ray photoelectron spectroscopy. The nanocomposites were tested on both methyl orange and hexavalent chromium removal. A fast dye-sorption was achieved also in the presence of interferents and the recovery of the dye was obtained upon eco-friendly conditions. An efficient Cr(VI) abatement was obtained also after consecutive tests and without any regeneration treatment. The fine understanding of the reaction mechanism allowed us to interpret the pollutant-removal performances of the different materials, leading to tailored nanocomposites in terms of maximum sorption and reduction capability upon consecutive tests even in simulated drinking water

    Polyaniline/TiO2 composites: green photocatalysic synthesis and application in wastewater remediation

    Get PDF
    In recent years, polyaniline (PANI) composites and nanocomposites with metal and metal-oxide materials have received growing attention for electrochemical and photoelectrochemical applications (Gu 2013). Among them, PANI/TiO2 composites are probably the most interesting systems due to synergistic effects between the conductive polymer and the oxide photocatalyst in terms of photogenerated charge separation and photocatalytic efficiency (Bae 2011). Moreover, polyaniline has been reported to possess favourable sorption properties, which can be exploited for pollutant remediation (Alcaraz-Espinoza 2015, Janaki 2012). PANI/TiO2 composites are thus promising candidates for wastewater treatment combining different pollutant remediation approaches. Polyaniline is classically synthesised via oxidative polymerization (Tran 2011), which involves noxious reagents (aniline and peroxydisulfates) and leads to toxic and carcinogenic byproducts (such as benzidine and trans-azobenzidine). In recent years, greener alternatives have been reported, such as a synthetic process starting from aniline dimer ((4-aminophenil)aniline) and using Fe3+ as catalyst and H2O2 as oxidant (Della Pina 2018). Unfortunately, this alternative procedure does not offer any control over the polymer morphology, leading to compact materials with low surface area and, as a consequence, poor dye-sorption capability. Very recently, we proposed a new photocatalytically induced green synthesis leading to stable polyaniline/TiO2 composites with porous morphology, wide surface area, high crystallinity and, most important, excellent dye removal performance and reusability (Cionti 2018). The reaction is carried out in two steps: at first, the aniline dimer is dissolved in a HCl aqueous solution and TiO2 is added while starting UV irradiation. In the second step, H2O2 is added in the dark, leading to the final product. In this work, we shed light on the photocatalytic nature of the synthetic mechanism, highlighting the different roles of TiO2 and of H2O2 on the composite structural and morphological features as well as on the composite performance for pollutant abatement. The reaction mechanism was investigated by a combination of spectrometric techniques, radical scavenger tests, and surface characterizations (Fig.1). By sampling the reaction mixture at different irradiation times, we demonstrated that under UV irradiation the growth of the oligomers occurs at the TiO2 particle surfaces. The same experiment carried out without UV irradiation showed the intrinsic photocatalytic nature of the process: in the dark, only short oligomers without appropriate chain conjugation were produced. However, even after prolonged UV irradiation, the final green product could be obtained only upon addition of H2O2, showing that, while oligomer formation is initiated by radicals produced by TiO2 photocatalysis, small amounts of an oxidant (H2O2) are still needed for the polymer chain growth. The role of the H2O2 amount proved to be especially crucial with respect to the composite properties. Increasing the H2O2 amount together with that of TiO2 led to composites with low surface area and reduced dye removal capability (Fig.2 a) due to a faster polymerization step. On the other hand, when only the photocatalyst amount was increased, neither the product morphology, nor its dye-removal ability were affected. This enables to increase the TiO2 content within the composite with the aim of enhancing its photocatalytic performance. In this respect, the composite stability was tested in water under prolonged UV irradiation, showing that the material optical, structural and morphological properties remained unchanged. The composite was tested towards the removal of anionic azo dyes in aqueous solution, evaluating the effect of the matrix composition and the composite reusability (Fig.2 b), showing promising results

    Polyaniline (PANI): an innovative support for sampling and removal of VOCs in air matrices

    Get PDF
    Polyaniline (PANI)-based materials for both removal and sampling of volatile organic compounds (VOCs) from air by rapid adsorption/desorption processes have been developed. The polymer was synthesized in form of emeraldine as both salt and base using different synthetic approaches, a traditional one and a "green" one. VOCs adsorption/desorption efficiency was evaluated for all the materials analyzing the desorbed VOCs fractions by GC/MS technique and obtaining results similar to the presently adopted method employing commercial activated carbon. Most important, in this work it has been demonstrated for the first time that the use of PANI-based sorbents allowed the substitution of the toxic CS2, recommended in official methods, with the less hazardous CH3OH as the VOCs extraction solvent. Moreover, a complete regeneration of the polymers could be realized by a few rapid washing steps. Finally, the best PANI-based material was subjected to recycling tests thereby showing a high adsorption/desorption efficiency retention up to four runs

    Towards "green" smart materials for force and strain sensors: The case of polyaniline

    Get PDF
    Stress/strain sensors constitute a class of devices with a global ever-growing market thanks to their use in many fields of modern life. They are typically constituted by thin metal foils deposited on flexible supports. However, the low inherent resistivity and limited flexibility of their constituents make them inadequate for several applications, such as measuring large movements in robotic systems and biological tissues. As an alternative to the traditional compounds, in the present work we will show the advantages to employ a smart material, polyaniline (PANI), prepared by an innovative environmentally friendly route, for force/strain sensor applications wherein simple processing, environmental friendliness and sensitivity are particularly required.This work was supported by FEDER through the COMPETE Program and by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Project PESTC/FIS/UI607/2011 and the project Matepro –Optimizing Materials and Processes”, ref. NORTE-070124-FEDER-000037”, co-funded by the “Programa Operacional Regional do Norte” (ON.2 – O Novo Norte), under the “Quadro de Referência Estratégico Nacional” (QREN), through the “Fundo Europeu de Desenvolvimento Regional” (FEDER). The authors also thank FCT for financial support under project PTDC/CTM-NAN/112574/2009. The authors also thank the COST Actions MP1003 (European Scientific Network for Artificial Muscles, ESNAM) and MP0902 (Composites of Inorganic Nanotubes and Polymers, COINAPO)

    Inkjet printed doped polyaniline: navigating through physics and chemistry for the next generation devices

    Get PDF
    Innovative benzidine-free PANI-based inks for electrically conducive inkjet printed devices were developed and tested and the results compared with those obtained by traditional PANI. NMR investigations evidenced the presence of quinones and phenolic groups on the backbone of the innovative PANIs that are thought being responsible for the higher solubility in DMSO. A mechanism of reaction was proposed. The numerous characterizations (NMR, UV-Vis, FTIR, XPS and electrical investigations) allowed to compare protonation level, doping level, valence band maximum for both the type of PANI. The correlation among structural properties, printability, conductivity and solubility was discussed

    Sustainable Approaches for Polyaniline and Polypyrrole Synthesis

    Get PDF
    : Among the conducting organic polymers (COPs), polyaniline (PANI) and polypyrrole (PPY) are the most investigated. Even though many efforts have been done to overcome the traditional synthetic methods typically based on the use of strong stoichiometric oxidants, the growing environmental sensitivity and the necessity of pure products, especially in medical and biological fields, make the COPs “green†synthesis a topic of the utmost importance. Herein, we report a brief overview of our results in the synthesis of PANI and PPY operating under mild conditions, using H2O2 and O2 as the oxidants in the presence of different catalysts: colloidal Au nanoparticles (AuNPs), AuNPs/TiO2, AuNPs/C, metallic Cu, Cu salts and Fe3O4 NPs

    Oxidative inactivation of SARS-CoV-2 on photoactive AgNPs@Tio2 ceramic tiles

    Get PDF
    The current SARS-CoV-2 pandemic causes serious public health, social, and economic issues all over the globe. Surface transmission has been claimed as a possible SARS-CoV-2 infection route, especially in heavy contaminated environmental surfaces, including hospitals and crowded public places. Herein, we studied the deactivation of SARS-CoV-2 on photoactive AgNPs@TiO2 coated on industrial ceramic tiles under dark, UVA, and LED light irradiations. SARS-CoV-2 inactivation is effective under any light/dark conditions. The presence of AgNPs has an important key to limit the survival of SARS-CoV-2 in the dark; moreover, there is a synergistic action when TiO2 is decorated with Ag to enhance the virus photocatalytic inactivation even under LED. The radical oxidation was confirmed as the the central mechanism behind SARS-CoV-2 damage/inactivation by ESR analysis under LED light. Therefore, photoactive AgNPs@TiO2 ceramic tiles could be exploited to fight surface infections, especially during viral severe pandemics

    Clean transformation of ethanol to useful chemicals : the behavior of a gold-modified silicalite catalyst

    Get PDF
    Upon addition of gold to silicalite-1 pellets (a MFI-type zeolite), the vapor phase oxidation of ethanol could be addressed to acetaldehyde or acetic acid formation. By optimizing the catalyst composition and reaction conditions, the conversion of ethanol could be tuned to acetaldehyde with 97% selectivity at 71% conversion or to acetic acid with 78% selectivity at total conversion. Considering that unloaded silicalite-1 was found to catalyze the dehydration of ethanol to diethylether or ethene, a green approach for the integrated production of four important chemicals is herein presented. This is based on renewable ethanol as a reagent and a modular catalytic process
    • …
    corecore