3,640 research outputs found

    Rydberg transition frequencies from the Local Density Approximation

    Full text link
    A method is given that extracts accurate Rydberg excitations from LDA density functional calculations, despite the short-ranged potential. For the case of He and Ne, the asymptotic quantum defects predicted by LDA are in less than 5% error, yielding transition frequency errors of less than 0.1eV.Comment: 4 pages, 6 figures, submitted to Phys. Rev. Let

    Topological interactions in systems of mutually interlinked polymer rings

    Full text link
    The topological interaction arising in interlinked polymeric rings such as DNA catenanes is considered. More specifically, the free energy for a pair of linked random walk rings is derived where the distance RR between two segments each of which is part of a different ring is kept constant. The topology conservation is imposed by the Gauss invariant. A previous approach (M.Otto, T.A. Vilgis, Phys.Rev.Lett. {\bf 80}, 881 (1998)) to the problem is refined in several ways. It is confirmed, that asymptotically, i.e. for large RRGR\gg R_G where RGR_G is average size of single random walk ring, the effective topological interaction (free energy) scales R4\propto R^4.Comment: 16 pages, 3 figur

    Magnetism and local distortions near carbon impurity in γ\gamma-iron

    Full text link
    Local perturbations of crystal and magnetic structure of γ\gamma-iron near carbon interstitial impurity is investigated by {\it ab initio} electronic structure calculations. It is shown that the carbon impurity creates locally a region of ferromagnetic ordering with substantial tetragonal distortions. Exchange integrals and solution enthalpy are calculated, the latter being in a very good agreement with experimental data. Effect of the local distortions on the carbon-carbon interactions in γ\gamma-iron is discussed.Comment: 4 pages 3 figures. Final version, accepted to Phys.Rev. Let

    Investigating interaction-induced chaos using time-dependent density functional theory

    Full text link
    Systems whose underlying classical dynamics are chaotic exhibit signatures of the chaos in their quantum mechanics. We investigate the possibility of using time-dependent density functional theory (TDDFT) to study the case when chaos is induced by electron-interaction alone. Nearest-neighbour level-spacing statistics are in principle exactly and directly accessible from TDDFT. We discuss how the TDDFT linear response procedure can reveal the mechanism of chaos induced by electron-interaction alone. A simple model of a two-electron quantum dot highlights the necessity to go beyond the adiabatic approximation in TDDFT.Comment: 8 pages, 4 figure

    Network dynamics of ongoing social relationships

    Full text link
    Many recent large-scale studies of interaction networks have focused on networks of accumulated contacts. In this paper we explore social networks of ongoing relationships with an emphasis on dynamical aspects. We find a distribution of response times (times between consecutive contacts of different direction between two actors) that has a power-law shape over a large range. We also argue that the distribution of relationship duration (the time between the first and last contacts between actors) is exponentially decaying. Methods to reanalyze the data to compensate for the finite sampling time are proposed. We find that the degree distribution for networks of ongoing contacts fits better to a power-law than the degree distribution of the network of accumulated contacts do. We see that the clustering and assortative mixing coefficients are of the same order for networks of ongoing and accumulated contacts, and that the structural fluctuations of the former are rather large.Comment: to appear in Europhys. Let

    Population structure analyses of <i>Staphylococcus aureus</i> at Tygerberg Hospital, South Africa, reveals a diverse population, a high prevalence of Panton-Valentine leukocidin genes, and unique local methicillin-resistant S. aureus clones

    Get PDF
    AbstractStudies reporting on the population structure of Staphylococcus aureus in South Africa have focused only on methicillin-resistant S. aureus (MRSA). This study describes the population structure of S. aureus, including methicillin-susceptible S. aureus (MSSA) isolated from patients at Tygerberg Academic Hospital, Western Cape province. Pulsed-field gel electrophoresis (PFGE), detection of Panton–Valentine leukocidin (PVL), spa typing, multilocus sequence typing (MLST), agr typing and SCCmec typing were used to characterize strains. Of 367 non-repetitive S. aureus isolates collected over a period of 1 year, 56 (15.3%) were MRSA. Skin and soft tissue infections were the most frequent source (54.8%), followed by bone and joint (15.3%) and respiratory tract infections (7.7%). For strain typing, PFGE was the most discriminative method, and resulted in 31 pulsotypes (n = 345, 94.0%), as compared with 16 spa clonal complexes (CCs) (n = 344, 93.4%). Four MLST CCs were identified after eBURST of sequence types (STs) of selected isolates. One hundred and sixty isolates (MSSA, n = 155, 42.2%) were PVL-positive, and agr types I–IV and SCCmec types I–V were identified. Our S. aureus population consisted of genotypically diverse strains, with PVL being a common characteristic of MSSA. MSSA and MRSA isolates clustered in different clones. However, the dominant MRSA clone (ST612) also contained an MSSA isolate, and had a unique genotype. Common global epidemic MRSA clones, such as ST239-MRSA-III and ST36-MRSA-II, were identified. A local clone, ST612-MRSA-IV, was found to be the dominant MRSA clone

    Managing Risk of Bidding in Display Advertising

    Full text link
    In this paper, we deal with the uncertainty of bidding for display advertising. Similar to the financial market trading, real-time bidding (RTB) based display advertising employs an auction mechanism to automate the impression level media buying; and running a campaign is no different than an investment of acquiring new customers in return for obtaining additional converted sales. Thus, how to optimally bid on an ad impression to drive the profit and return-on-investment becomes essential. However, the large randomness of the user behaviors and the cost uncertainty caused by the auction competition may result in a significant risk from the campaign performance estimation. In this paper, we explicitly model the uncertainty of user click-through rate estimation and auction competition to capture the risk. We borrow an idea from finance and derive the value at risk for each ad display opportunity. Our formulation results in two risk-aware bidding strategies that penalize risky ad impressions and focus more on the ones with higher expected return and lower risk. The empirical study on real-world data demonstrates the effectiveness of our proposed risk-aware bidding strategies: yielding profit gains of 15.4% in offline experiments and up to 17.5% in an online A/B test on a commercial RTB platform over the widely applied bidding strategies

    Interferometric Astrometry of the Low-mass Binary Gl 791.2 (= HU Del) Using Hubble Space Telescope Fine Guidance Sensor 3: Parallax and Component Masses

    Full text link
    With fourteen epochs of fringe tracking data spanning 1.7y from Fine Guidance Sensor 3 we have obtained a parallax (pi_abs=113.1 +- 0.3 mas) and perturbation orbit for Gl 791.2A. Contemporaneous fringe scanning observations yield only three clear detections of the secondary on both interferometer axes. They provide a mean component magnitude difference, Delta V = 3.27 +- 0.10. The period (P = 1.4731 yr) from the perturbation orbit and the semi-major axis (a = 0.963 +- 0.007 AU) from the measured component separations with our parallax provide a total system mass M_A + M_B = 0.412 +- 0.009 M_sun. Component masses are M_A=0.286 +- 0.006 M_sun and M_B = 0.126 +- 0.003 M_sun. Gl 791.2A and B are placed in a sparsely populated region of the lower main sequence mass-luminosity relation where they help define the relation because the masses have been determined to high accuracy, with errors of only 2%.Comment: 19 pages, 5 figures. The paper is to appear in August 2000 A

    Comment on "On the importance of the free energy for elasticity under pressure"

    Full text link
    Marcus et al. (Marcus P, Ma H and Qiu S L 2002 J. Phys.: Condens. Matter 14 L525) claim that thermodynamic properties of materials under pressure must be computed using the Gibbs free energy GG, rather than the internal energy EE. Marcus et al. state that ``The minima of GG, but not of EE, give the equilibrium structure; the second derivatives of GG, but not of EE, with respect to strains at the equilibrium structure give the equilibrium elastic constants.'' Both statements are incorrect.Comment: Commen

    Systematic corrections to the measured cosmological constant as a result of local inhomogeneity

    Full text link
    We calculate the systematic inhomogeneity-induced correction to the cosmological constant that one would infer from an analysis of the luminosities and redshifts of Type Ia supernovae, assuming a homogeneous universe. The calculation entails a post-Newtonian expansion within the framework of second order perturbation theory, wherein we consider the effects of subhorizon density perturbations in a flat, dust dominated universe. Within this formalism, we calculate luminosity distances and redshifts along the past light cone of an observer. The resulting luminosity distance-redshift relation is fit to that of a homogeneous model in order to deduce the best-fit cosmological constant density Omega_Lambda. We find that the luminosity distance-redshift relation is indeed modified, by a small fraction of order 10^{-5}. When fitting this perturbed relation to that of a homogeneous universe, we find that the inferred cosmological constant can be surprisingly large, depending on the range of redshifts sampled. For a sample of supernovae extending from z=0.02 out to z=0.15, we find that Omega_Lambda=0.004. The value of Omega_Lambda has a large variance, and its magnitude tends to get larger for smaller redshifts, implying that precision measurements from nearby supernova data will require taking this effect into account. However, we find that this effect is likely too small to explain the observed value of Omega_Lambda=0.7. There have been previous claims of much larger backreaction effects. By contrast to those calculations, our work is directly related to how observers deduce cosmological parameters from astronomical data.Comment: 28 pages, 3 figures, revtex4; v2: corrected comments and the section on previous work; v3: clarified wording. References adde
    corecore