91,177 research outputs found

    Geometric models, antenna gains, and protection ratios as developed for BC SAT-R2 conference software

    Get PDF
    Mathematical models used in the software package developed for use at the 1983 Regional Administrative Radio Conference on broadcasting satellites. The models described are those used in the Spectrum Orbit Utilization Program (SOUP) analysis. The geometric relationships necessary to model broadcasting satellite systems are discussed. Antenna models represent copolarized and cross polarized performance as functions of the off axis angle. The protection ratio is modelled as a co-channel value and a template representing systems with frequency offsets

    Capabilities, limitations, and use of BC SAT-R2 conference software

    Get PDF
    The computer software developed for the BC SAT-R2 Conference has certain capabilities and limitations which are described. Capabilities of each major program element are addressed with respect to providing the required functions for planning and output reporting. Limitations arise from the inability to exactly represent certain systems that may be examined. Expected use of the software package during the Conference is outlined

    Evaluation of otolith organ function by means of ocular counter-rolling measurements

    Get PDF
    Evaluation of otolith organ function by photographic measurement of ocular counterrollin

    Low-cost, portable fire hose tester

    Get PDF
    Availability of pumping unit permits scheduling and performing required periodic hose tests in proper manner while retaining full fire equipment readiness. Use of pumping unit preserves operating life and capability of pumper truck

    Quantum diffusion in liquid water from ring polymer molecular dynamics

    Get PDF
    We have used the ring polymer molecular-dynamics method to study the translational and orientational motions in an extended simple point charge model of liquid water under ambient conditions. We find, in agreement with previous studies, that quantum-mechanical effects increase the self-diffusion coefficient D and decrease the relaxation times around the principal axes of the water molecule by a factor of around 1.5. These results are consistent with a simple Stokes-Einstein picture of the molecular motion and suggest that the main effect of the quantum fluctuations is to decrease the viscosity of the liquid by about a third. We then go on to consider the system-size scaling of the calculated self-diffusion coefficient and show that an appropriate extrapolation to the limit of infinite system size increases D by a further factor of around 1.3 over the value obtained from a simulation of a system containing 216 water molecules. These findings are discussed in light of the widespread use of classical molecular-dynamics simulations of this sort of size to model the dynamics of aqueous systems

    Conditions driving chemical freeze-out

    Full text link
    We propose the entropy density as the thermodynamic condition driving best the chemical freeze-out in heavy-ion collisions. Taking its value from lattice calculations at zero chemical potential, we find that it is excellent in reproducing the experimentally estimated freeze-out parameters. The two characteristic endpoints in the freeze-out diagram are reproduced as well.Comment: 8 pages, 5 eps figure

    Quantum diffusion in liquid para-hydrogen from ring-polymer molecular dynamics

    Get PDF
    We have used the ring-polymer molecular dynamics method to calculate approximate Kubo-transformed velocity autocorrelation functions and self-diffusion coefficients for low-pressure liquid para-hydrogen at temperatures of 25 and 14 K. The resulting diffusion coefficients are shown to be consistent with experimental shear viscosities and the established finite-size relation D(L)~=D([infinity])–2.837kBT/6pietaL, where kB is the Boltzmann constant, T the absolute temperature, eta the shear viscosity, and L the length of the (cubic) simulation cell. The diffusion coefficients D(L) obtained in simulations with finite system sizes are therefore too small. However, the extrapolation to infinite system size corrects this deficiency and leads to excellent agreement with experimental results. This both demonstrates the influence of system-size effects on quantum mechanical diffusion coefficients and provides further evidence that ring-polymer molecular dynamics is an accurate as well as practical way of including quantum effects in condensed phase molecular dynamics

    An analysis of bi-directional use of frequencies for satellite communications

    Get PDF
    The bi-directional use of frequencies allocated for space communications has the potential to double the orbit/spectrum capacity available. The technical feasibility of reverse band use (RBU) at C-band (4 GHz uplinks and 6 GHz downlinks) is studied. The analysis identifies the constraints under which both forward and reverse band use satellite systems can share the same frequencies with terrestrial, line of sight transmission systems. The results of the analysis show that RBU satellite systems can be similarly sized to forward band use (FBU) satellite systems. In addition, the orbital separation requirements between RBU and FBU satellite systems are examined. The analysis shows that a carrier to interference ratio of 45 dB can be maintianed between RBU and FBU satellites separated by less than 0.5 deg., and that a carrier to interference ratio of 42 dB can be maintained in the antipodal case. Rain scatter propagation analysis shows that RBU and FBU Earth stations require separation distances fo less than 10 km at a rain rate of 13.5 mm/hr escalating to less than 100 km at a rain rate of 178 mm/hr for Earth station antennas in the 3 to 10 m range

    Comparison of autokinetic movement perceived by normal persons and deaf subjects with bilateral labyrinthine defects

    Get PDF
    Comparison of autokinetic movement perceived by normal persons and deaf subjects with bilateral labyrinthine defects - Aerospace medicin
    • …
    corecore