11 research outputs found

    On the Shear Instability in Relativistic Neutron Stars

    Full text link
    We present new results on instabilities in rapidly and differentially rotating neutron stars. We model the stars in full general relativity and describe the stellar matter adopting a cold realistic equation of state based on the unified SLy prescription. We provide evidence that rapidly and differentially rotating stars that are below the expected threshold for the dynamical bar-mode instability, beta_c = T/|W| ~ 0.25, do nevertheless develop a shear instability on a dynamical timescale and for a wide range of values of beta. This class of instability, which has so far been found only for small values of beta and with very small growth rates, is therefore more generic than previously found and potentially more effective in producing strong sources of gravitational waves. Overall, our findings support the phenomenological predictions made by Watts, Andersson and Jones on the nature of the low-T/|W|.Comment: 20 pages; accepted to the Classical and Quantum Gravity special issue for MICRA200

    Shell sources as a probe of relativistic effects in neutron star models

    Get PDF
    A perturbing shell is introduced as a device for studying the excitation of fluid motions in relativistic stellar models. We show that this approach allows a reasonably clean separation of radiation from the shell and from fluid motions in the star, and provides broad flexibility in the location and timescale of perturbations driving the fluid motions. With this model we compare the relativistic and Newtonian results for the generation of even parity gravitational waves from constant density models. Our results suggest that relativistic effects will not be important in computations of the gravitational emission except possibly in the case of excitation of the neutron star on very short time scales.Comment: 16 pages LaTeX with 6 eps figures; submitted to Phys. Rev.

    Gravitational waves from a test particle scattered by a neutron star: Axial mode case

    Get PDF
    Using a metric perturbation method, we study gravitational waves from a test particle scattered by a spherically symmetric relativistic star. We calculate the energy spectrum and the waveform of gravitational waves for axial modes. Since metric perturbations in axial modes do not couple to the matter fluid of the star, emitted waves for a normal neutron star show only one peak in the spectrum, which corresponds to the orbital frequency at the turning point, where the gravitational field is strongest. However, for an ultracompact star (the radius R≲3MR \lesssim 3M), another type of resonant periodic peak appears in the spectrum. This is just because of an excitation by a scattered particle of axial quasinormal modes, which were found by Chandrasekhar and Ferrari. This excitation comes from the existence of the potential minimum inside of a star. We also find for an ultracompact star many small periodic peaks at the frequency region beyond the maximum of the potential, which would be due to a resonance of two waves reflected by two potential barriers (Regge-Wheeler type and one at the center of the star). Such resonant peaks appear neither for a normal neutron star nor for a Schwarzschild black hole. Consequently, even if we analyze the energy spectrum of gravitational waves only for axial modes, it would be possible to distinguish between an ultracompact star and a normal neutron star (or a Schwarzschild black hole).Comment: 21 pages, revtex, 11 figures are attached with eps files Accepted to Phys. Rev.

    A puzzle concerning the quadrupole formula for gravitational radiation

    No full text

    Non-axisymmetric instability and fragmentation of general relativistic quasi-toroidal stars

    Get PDF
    In a recent publication, we have demonstrated that differentially rotating stars admit new channels of black hole formation via fragmentation instabilities. Since a higher order instability of this kind could potentially transform a differentially rotating supermassive star into a multiple black hole system embedded in a massive accretion disk, we investigate the dependence of the instability on parameters of the equilibrium model. We find that many of the models constructed exhibit non-axisymmetric instabilities with corotation points, even for low values of T/|W|, which lead to a fission of the stars into one, two or three fragments, depending on the initial perturbation. At least in the models selected here, an m=1 mode becomes unstable at lower values of T/|W|, which would seem to favor a scenario where one black hole with a massive accretion disk forms. In this case, we have gained evidence that low values of compactness of the initial model can lead to a stabilization of the resulting fragment, thus preventing black hole formation in this scenario
    corecore