9,146 research outputs found

    Self-organizing patterns maintained by competing associations in a six-species predator-prey model

    Full text link
    Formation and competition of associations are studied in a six-species ecological model where each species has two predators and two prey. Each site of a square lattice is occupied by an individual belonging to one of the six species. The evolution of the spatial distribution of species is governed by iterated invasions between the neighboring predator-prey pairs with species specific rates and by site exchange between the neutral pairs with a probability XX. This dynamical rule yields the formation of five associations composed of two or three species with proper spatiotemporal patterns. For large XX a cyclic dominance can occur between the three two-species associations whereas one of the two three-species associations prevails in the whole system for low values of XX in the final state. Within an intermediate range of XX all the five associations coexist due to the fact that cyclic invasions between the two-species associations reduce their resistance temporarily against the invasion of three-species associations.Comment: 6 pages, 8 figure

    Anderson Localization, Non-linearity and Stable Genetic Diversity

    Full text link
    In many models of genotypic evolution, the vector of genotype populations satisfies a system of linear ordinary differential equations. This system of equations models a competition between differential replication rates (fitness) and mutation. Mutation operates as a generalized diffusion process on genotype space. In the large time asymptotics, the replication term tends to produce a single dominant quasispecies, unless the mutation rate is too high, in which case the populations of different genotypes becomes de-localized. We introduce a more macroscopic picture of genotypic evolution wherein a random replication term in the linear model displays features analogous to Anderson localization. When coupled with non-linearities that limit the population of any given genotype, we obtain a model whose large time asymptotics display stable genotypic diversityComment: 25 pages, 8 Figure

    Group selection models in prebiotic evolution

    Full text link
    The evolution of enzyme production is studied analytically using ideas of the group selection theory for the evolution of altruistic behavior. In particular, we argue that the mathematical formulation of Wilson's structured deme model ({\it The Evolution of Populations and Communities}, Benjamin/Cumings, Menlo Park, 1980) is a mean-field approach in which the actual environment that a particular individual experiences is replaced by an {\it average} environment. That formalism is further developed so as to avoid the mean-field approximation and then applied to the problem of enzyme production in the prebiotic context, where the enzyme producer molecules play the altruists role while the molecules that benefit from the catalyst without paying its production cost play the non-altruists role. The effects of synergism (i.e., division of labor) as well as of mutations are also considered and the results of the equilibrium analysis are summarized in phase diagrams showing the regions of the space of parameters where the altruistic, non-altruistic and the coexistence regimes are stable. In general, those regions are delimitated by discontinuous transition lines which end at critical points.Comment: 22 pages, 10 figure

    Error Thresholds on Dynamic Fittness-Landscapes

    Get PDF
    In this paper we investigate error-thresholds on dynamics fitness-landscapes. We show that there exists both lower and an upper threshold, representing limits to the copying fidelity of simple replicators. The lower bound can be expressed as a correction term to the error-threshold present on a static landscape. The upper error-threshold is a new limit that only exists on dynamic fitness-landscapes. We also show that for long genomes on highly dynamic fitness-landscapes there exists a lower bound on the selection pressure needed to enable effective selection of genomes with superior fitness independent of mutation rates, i.e., there are distinct limits to the evolutionary parameters in dynamic environments.Comment: 5 page

    Eigen model as a quantum spin chain: exact dynamics

    Full text link
    We map Eigen model of biological evolution [Naturwissenschaften {\bf 58}, 465 (1971)] into a one-dimensional quantum spin model with non-Hermitean Hamiltonian. Based on such a connection, we derive exact relaxation periods for the Eigen model to approach static energy landscape from various initial conditions. We also study a simple case of dynamic fitness function.Comment: 10 pages. Physical Revew E vol. 69, in press (2004

    Complex noise in diffusion-limited reactions of replicating and competing species

    Full text link
    We derive exact Langevin-type equations governing quasispecies dynamics. The inherent multiplicative noise has both real and imaginary parts. The numerical simulation of the underlying complex stochastic partial differential equations is carried out employing the Cholesky decomposition for the noise covariance matrix. This noise produces unavoidable spatio-temporal density fluctuations about the mean field value. In two dimensions, the fluctuations are suppressed only when the diffusion time scale is much smaller than the amplification time scale for the master species.Comment: 10 pages, 2 composite figure

    Differentiation and Replication of Spots in a Reaction Diffusion System with Many Chemicals

    Full text link
    The replication and differentiation of spots in reaction diffusion equations are studied by extending the Gray-Scott model with self-replicating spots to include many degrees of freedom needed to model systems with many chemicals. By examining many possible reaction networks, the behavior of this model is categorized into three types: replication of homogeneous fixed spots, replication of oscillatory spots, and differentiation from `m ultipotent spots'. These multipotent spots either replicate or differentiate into other types of spots with different fixed-point dynamics, and as a result, an inhomogeneous pattern of spots is formed. This differentiation process of spots is analyzed in terms of the loss of chemical diversity and decrease of the local Kolmogorov-Sinai entropy. The relevance of the results to developmental cell biology and stem cells is also discussed.Comment: 8 pages, 12 figures, Submitted to EP

    Growth states of catalytic reaction networks exhibiting energy metabolism

    Full text link
    All cells derive nutrition by absorbing some chemical and energy resources from the environment; these resources are used by the cells to reproduce the chemicals within them, which in turn leads to an increase in their volume. In this study, we introduce a protocell model exhibiting catalytic reaction dynamics, energy metabolism, and cell growth. Results of extensive simulations of this model show the existence of four phases with regard to the rates of both the influx of resources and the cell growth. These phases include an active phase with high influx and high growth rates, an inefficient phase with high influx but low growth rates, a quasi-static phase with low influx and low growth rates, and a death phase with negative growth rate. A mean field model well explains the transition among these phases as bifurcations. The statistical distribution of the active phase is characterized by a power law and that of the inefficient phase is characterized by a nearly equilibrium distribution. We also discuss the relevance of the results of this study to distinct states in the existing cells.Comment: 21 pages, 5 figure

    Schwinger Boson Formulation and Solution of the Crow-Kimura and Eigen Models of Quasispecies Theory

    Full text link
    We express the Crow-Kimura and Eigen models of quasispecies theory in a functional integral representation. We formulate the spin coherent state functional integrals using the Schwinger Boson method. In this formulation, we are able to deduce the long-time behavior of these models for arbitrary replication and degradation functions. We discuss the phase transitions that occur in these models as a function of mutation rate. We derive for these models the leading order corrections to the infinite genome length limit.Comment: 37 pages; 4 figures; to appear in J. Stat. Phy

    Non-Gaussian statistics and extreme waves in a nonlinear optical cavity

    Full text link
    A unidirectional optical oscillator is built by using a liquid crystal light-valve that couples a pump beam with the modes of a nearly spherical cavity. For sufficiently high pump intensity, the cavity field presents a complex spatio-temporal dynamics, accompanied by the emission of extreme waves and large deviations from the Gaussian statistics. We identify a mechanism of spatial symmetry breaking, due to a hypercycle-type amplification through the nonlocal coupling of the cavity field
    • …
    corecore