46 research outputs found

    Early markers for myocardial ischemia and sudden cardiac death.

    Get PDF
    The post-mortem diagnosis of acute myocardial ischemia remains a challenge for both clinical and forensic pathologists. We performed an experimental study (ligation of left anterior descending coronary artery in rats) in order to identify early markers of myocardial ischemia, to further apply to forensic and clinical pathology in cases of sudden cardiac death. Using immunohistochemistry, Western blots, and gene expression analyses, we investigated a number of markers, selected among those which are currently used in emergency departments to diagnose myocardial infarction and those which are under investigation in basic research and autopsy pathology studies on cardiovascular diseases. The study was performed on 44 adult male Lewis rats, assigned to three experimental groups: control, sham-operated, and operated. The durations of ischemia ranged between 5 min and 24 h. The investigated markers were troponins I and T, myoglobin, fibronectin, C5b-9, connexin 43 (dephosphorylated), JunB, cytochrome c, and TUNEL staining. The earliest expressions (≤30 min) were observed for connexin 43, JunB, and cytochrome c, followed by fibronectin (≤1 h), myoglobin (≤1 h), troponins I and T (≤1 h), TUNEL (≤1 h), and C5b-9 (≤2 h). By this investigation, we identified a panel of true early markers of myocardial ischemia and delineated their temporal evolution in expression by employing new technologies for gene expression analysis, in addition to traditional and routine methods (such as histology and immunohistochemistry). Moreover, for the first time in the autopsy pathology field, we identified, by immunohistochemistry, two very early markers of myocardial ischemia: dephosphorylated connexin 43 and JunB

    Splenic hypereosinophilia in anaphylaxis-related death: different assessments depending on different types of allergens?

    No full text
    The aim of this study was to evaluate splenic eosinophil and mast cell accumulation using pagoda red stain in a series of anaphylaxis-related deaths that underwent medico-legal investigations. Our goal was to assess whether fatal reactions to insect stings, intramuscularly administered antibiotics and intravenously injected contrast media are responsible for specific patterns of eosinophil and mast cell accumulation. Two study groups were prospectively formed, an anaphylaxis-related death group and a control group. Autopsy, histology (haematoxylin-eosin stain, pagoda red stain and immunohistochemistry using anti-tryptase antibodies), toxicology and postmortem biochemistry (beta-tryptase, total IgE and specific IgE) were performed in all cases. All tested parameters (spleen weight, beta-tryptase and total IgE levels as well as eosinophil, mast cell and degranulated mast cell numbers in the spleen) were significantly higher in the anaphylaxis-related death group. No statistically significant differences were observed among the various groups (intramuscular antibiotic injection, intravenous contrast medium administration and stinging insects) in any combination, suggesting that mast cell and eosinophil accumulation in the spleen during anaphylaxis does not have any specific pattern related to the triggering allergen. Despite a lower sensitivity than immunohistochemical staining in discriminating eosinophil and mast cells, pagoda red stain allowed these cells to be identified and could therefore be proposed as a low-cost, first-line diagnostic procedure in those situations where immunohistochemistry is not systematically performed or cannot be carried out

    Autopsy Chemistry

    No full text
    corecore