388 research outputs found

    Reply to comment on the paper “ on a role of quadruple component of magnetic field in defining solar activity in grand cycles” by Usoskin (2017)

    Get PDF
    In this communication we provide our answers to the comments by Usoskin (2017) on our recent paper (Popova et al, 2017a). We show that Principal Component Analysis (PCA) allows us to derive eigen vectors with eigen values assigned to variance of solar magnetic field waves from full disk solar magnetograms obtained in cycles 21–23 which came in pairs. The current paper (Popova et al, 2017a) adds the second pair of magnetic waves generated by quadruple magnetic sources. This allows us to recover a centennial cycle, in addition to the grand cycle, and to produce a closer fit to the solar and terrestrial activity features in the past millennium

    Remote detection of traces of high energetic materials

    Get PDF
    The possibility of remote detection of traces of high energetic materials using laser fragmentation/laser-induced fluorescence (LF/LIF) method is studied. Experimental data on the remote visualization of traces of trinitrotoluene, hexogen, composition B, octogen, and tetryl obtained at a distance of 5 m with a scanning lidar detector of traces of high energetic materials are presented

    Enhancement of the Raman lidar sensitivity using overtones of vibrational-rotational Raman bands of oxygen or nitrogen as the reference signals

    Get PDF
    Influence of the vibrational-rotational Raman bands of molecules of the main components of the atmosphere (oxygen and nitrogen) on the sensitivity of Raman lidar is considered. A method is proposed of using the first overtones of the vibrational-rotational Raman bands of oxygen and nitrogen molecules as the reference signals for the measurement of low concentrations of chemicals in the atmosphere by the Raman method

    Mathematical model of a two-stage process of laser fragmentation of nitrocompound molecules and subsequent laser-induced fluorescence of characteristic fragments

    Get PDF
    The paper presents a mathematical model describing the kinetics of the two-stage process of laser fragmentation of vapors of nitrocompounds and subsequent nitric oxide (NO-fragments) laser-induced fluorescence. The use of the developed model in the lidar equation for the case of fluorescent objects allows to calculate the expected value of the lidar signal for a particular nitrocompound on the basis of spectroscopic information about the object of detection, parameters of the radiation propagation medium, and transceiver equipment parameter

    Anomalies of Density, Stresses, and the Gravitational Field in the Interior of Mars

    Full text link
    We determined the possible compensation depths for relief harmonics of different degrees and orders. The relief is shown to be completely compensated within the depth range of 0 to 1400 km. The lateral distributions of compensation masses are determined at these depths and the maps are constructed. The possible nonisostatic vertical stresses in the crust and mantle of Mars are estimated to be 64 MPa in compression and 20 MPa in tension. The relief anomalies of the Tharsis volcanic plateau and symmetric feature in the eastern hemisphere could have arisen and been maintained dynamically due to two plumes in the mantle substance that are enriched with fluids. The plumes that originate at the core of Mars can arise and be maintained by the anomalies of the inner gravitational field achieving +800 mGal in the region of plume formation, - 1200 mGal above the lower mantle-core transition layer, and -1400 mGal at the crust.Comment: 9 pages, 5 figure

    Paramagnetic Meissner effect in superconductors from self-consistent solutions of Ginzburg-Landau equations

    Full text link
    The paramagnetic Meissner effect (PME) is observed in small superconducting samples, and a number of controversial explanations of this effect are proposed, but there is as yet no clear understanding of its nature. In the present paper PME is considered on the base of the Ginzburg-Landau theory (GL). The one-dimensional solutions are obtained in a model case of a long superconducting cylinder for different cylinder radii R, the GL-parameters \kappa and vorticities m. Acording to GL-theory, PME is caused by the presence of vortices inside the sample. The superconducting current flows around the vortex to screeen the vortex own field from the bulk of the sample. Another current flows at the boundary to screen the external field H from entering the sample. These screening currents flow in opposite directions and contribute with opposite signs to the total magnetic moment (or magnetization) of the sample. Depending on H, the total magnetization M may be either negative (diamagnetism), or positive (paramagnetism). A very complicated saw-like dependence M(H) (and other characteristics), which are obtained on the base of self-consistent solutions of the GL-equations, are discussed.Comment: 6 pages, 5 figures, RevTex, submitted to Phys. Rev.

    First principles molecular dynamics study of filled ice hydrogen hydrate

    Full text link
    We investigated structural changes, phase diagram, and vibrational properties of hydrogen hydrate in filled-ice phase C2 by using first principles molecular dynamics simulation. It was found that the experimentally reported 'cubic' structure is unstable at low temperature and/or high pressure. The 'cubic' structure reflects the symmetry at high (room) temperature where the hydrogen bond network is disordered and the hydrogen molecules are orientationally disordered due to thermal rotation. In this sense, the 'cubic' symmetry would definitely be lowered at low temperature where the hydrogen bond network and the hydrogen molecules are expected to be ordered. At room temperature and below 30 GPa, it is the thermal effects that play an essential role in stabilizing the structure in 'cubic' symmetry. Above 60 GPa, the hydrogen bonds in the framework would be symmetrized and the hydrogen bond order-disorder transition would disappear. These results also suggest the phase behavior of other filled-ice hydrates. In the case of rare gas hydrate, there would be no guest molecues rotation-nonrotation transition since the guest molecules keep their spherical symmetry at any temperature. On the contrary methane hydrate MH-III would show complex transitions due to the lower symmetry of the guest molecule. These results would encourage further experimental studies, especially NMR spectroscopy and neutron scattering, on the phases of filled-ice hydrates at high pressures and/or low temperatures.Comment: typos correcte

    The formation of Uranus and Neptune among Jupiter and Saturn

    Get PDF
    The outer giant planets, Uranus and Neptune, pose a challenge to theories of planet formation. They exist in a region of the Solar System where long dynamical timescales and a low primordial density of material would have conspired to make the formation of such large bodies (\sim 15 and 17 times as massive as the Earth, respectively) very difficult. Previously, we proposed a model which addresses this problem: Instead of forming in the trans-Saturnian region, Uranus and Neptune underwent most of their growth among proto-Jupiter and -Saturn, were scattered outward when Jupiter acquired its massive gas envelope, and subsequently evolved toward their present orbits. We present the results of additional numerical simulations, which further demonstrate that the model readily produces analogues to our Solar System for a wide range of initial conditions. We also find that this mechanism may partly account for the high orbital inclinations observed in the Kuiper belt.Comment: Submitted to AJ; 38 pages, 16 figure
    corecore