32 research outputs found
Epistatic Association Mapping in Homozygous Crop Cultivars
The genetic dissection of complex traits plays a crucial role in crop breeding. However, genetic analysis and crop breeding have heretofore been performed separately. In this study, we designed a new approach that integrates epistatic association analysis in crop cultivars with breeding by design. First, we proposed an epistatic association mapping (EAM) approach in homozygous crop cultivars. The phenotypic values of complex traits, along with molecular marker information, were used to perform EAM. In our EAM, all the main-effect quantitative trait loci (QTLs), environmental effects, QTL-by-environment interactions and QTL-by-QTL interactions were included in a full model and estimated by empirical Bayes approach. A series of Monte Carlo simulations was performed to confirm the reliability of the new method. Next, the information from all detected QTLs was used to mine novel alleles for each locus and to design elite cross combination. Finally, the new approach was adopted to dissect the genetic basis of seed length in 215 soybean cultivars obtained, by stratified random sampling, from 6 geographic ecotypes in China. As a result, 19 main-effect QTLs and 3 epistatic QTLs were identified, more than 10 novel alleles were mined and 3 elite parental combinations, such as Daqingdou and Zhengzhou790034, were predicted
Genetic architecture of carotid artery intima-media thickness in Mexican Americans
Background: Intima-media thickness (IMT) of the common and internal carotid arteries is an established surrogate for atherosclerosis and predicts risk of stroke and myocardial infarction. Often IMT is measured as the average of these 2 arteries; yet, they are believed to result from separate biological mechanisms. The aim of this study was to conduct a family-based genome-wide association study (GWAS) for IMT to identify polymorphisms influencing IMT and to determine if distinct carotid artery segments are influenced by different genetic components. Methods and Results: IMT for the common and internal carotid arteries was determined through B-mode ultrasound in 772 Mexican Americans from the San Antonio Family Heart Study. A GWAS using 931219 single-nucleotide polymorphisms was undertaken with 6 internal and common carotid artery IMT phenotypes using an additive measured genotype model. The most robust association detected was for 2 single-nucleotide polymorphisms (rs16983261, rs6113474; P=1.60e−7) in complete linkage disequilibrium on chromosome 20p11 for the internal carotid artery near wall, next to the gene PAX1. We also replicated previously reported GWAS regions on chromosomes 19q13 and 7q22. We found no overlapping associations between internal and common carotid artery phenotypes at P<5.0e−6. The genetic correlation between the 2 carotid IMT arterial segments was 0.51. Conclusions: This study represents the first large-scale GWAS of carotid IMT in a non–European population and identified several novel loci. We do not detect any shared GWAS signals between common and internal carotid arterial segments, but the moderate genetic correlation implies both common and unique genetic components
Genome-wide genetic investigation of serological measures of common infections
Populations and individuals differ in susceptibility to infections because of a number of factors, including host genetic variation. We previously demonstrated that differences in antibody titer, which reflect infection history, are significantly heritable. Here we attempt to identify the genetic factors influencing variation in these serological phenotypes. Blood samples from >1300 Mexican Americans were quantified for IgG antibody level against 12 common infections, selected on the basis of their reported role in cardiovascular disease risk: Chlamydia pneumoniae; Helicobacter pylori; Toxoplasma gondii; cytomegalovirus; herpes simplex I virus; herpes simplex II virus; human herpesvirus 6 (HHV6); human herpesvirus 8 (HHV8); varicella zoster virus; hepatitis A virus (HAV); influenza A virus; and influenza B virus. Pathogen-specific quantitative antibody levels were analyzed, as were three measures of pathogen burden. Genome-wide linkage and joint linkage and association analyses were performed using ~1 million SNPs. Significant linkage (lod scores >3.0) was obtained for HHV6 (on chromosome 7), HHV8 (on chromosome 6), and HAV (on chromosome 13). SNP rs4812712 on chromosome 20 was significantly associated with C. pneumoniae (P=5.3 × 10 -8). However, no genome-wide significant loci were obtained for the other investigated antibodies. We conclude that it is possible to localize host genetic factors influencing some of these antibody traits, but that further larger-scale investigations will be required to elucidate the genetic mechanisms contributing to variation in antibody levels
Transcriptome sequencing study implicates immune-related genes differentially expressed in schizophrenia: new data and a meta-analysis
We undertook an RNA sequencing (RNAseq)-based transcriptomic profiling study on lymphoblastoid cell lines of a European ancestry sample of 529 schizophrenia cases and 660 controls, and found 1058 genes to be differentially expressed by affection status. These differentially expressed genes were enriched for involvement in immunity, especially the 697 genes with higher expression in cases. Comparing the current RNAseq transcriptomic profiling to our previous findings in an array-based study of 268 schizophrenia cases and 446 controls showed a highly significant positive correlation over all genes. Fifteen (18%) of the 84 genes with significant (false discovery rat
<i>P</i>-values for EBNA-1 association, conditional on linkage, analysis for top Hodgkin lymphoma SNPs.
<p>Bold = <i>p</i>-value significant after Bonferoni correction for multiple testing (0.05/13≈3.85×10<sup>−3</sup>).</p