580 research outputs found

    Surface Induced Order in Liquid Metals and Binary Alloys

    Full text link
    Measurements of the surface x-ray scattering from several pure liquid metals (Hg, Ga, and In) and from three alloys (Ga-Bi, Bi-In, and K-Na) with different heteroatomic chemical interactions in the bulk phase are reviewed. Surface-induced layering is found for each elemental liquid metal. The surface structure of the K-Na alloy resembles that of an elemental liquid metal. Bi-In displays pair formation at the surface. Surface segregation and a wetting film are found for Ga-Bi.Comment: 10 pages, 3 fig, published in Journal of Physics: Condensed Matte

    Effect of vertical active vibration isolation on tracking performance and on ride qualities

    Get PDF
    An investigation to determine the effect on pilot performance and comfort of an active vibration isolation system for a commercial transport pilot seat is reported. The test setup consisted of: a hydraulic shaker which produced random vertical vibration inputs; the active vibration isolation system; the pilot seat; the pilot control wheel and column; the side-arm controller; and a two-axis compensatory tracking task. The effects of various degrees of pilot isolation on short-term (two-minute) tracking performance and comfort were determined

    Microscopic Surface Structure of Liquid Alkali Metals

    Full text link
    We report an x-ray scattering study of the microscopic structure of the surface of a liquid alkali metal. The bulk liquid structure factor of the eutectic K67Na33 alloy is characteristic of an ideal mixture, and so shares the properties of an elemental liquid alkali metal. Analysis of off-specular diffuse scattering and specular x-ray reflectivity shows that the surface roughness of the K-Na alloy follows simple capillary wave behavior with a surface structure factor indicative of surface induced layering. Comparison of thelow-angle tail of the K67Na33 surface structure factor with the one measured for liquid Ga and In previously suggests that layering is less pronounced in alkali metals. Controlled exposure of the liquid to H2 and O2 gas does not affect the surface structure, indicating that oxide and hydride are not stable at the liquid surface under these experimental conditions.Comment: 12 pages, 3 figures, published in Phys. Rev.

    Fermi Surface reconstruction in the CDW state of CeTe3 observed by photoemission

    Full text link
    CeTe3 is a layered compound where an incommensurate Charge Density Wave (CDW) opens a large gap (400 meV) in optimally nested regions of the Fermi Surface (FS), whereas other sections with poorer nesting remain ungapped. Through Angle-Resolved Photoemission, we identify bands backfolded according to the CDW periodicity. They define FS pockets formed by the intersection of the original FS and its CDW replica. Such pockets illustrate very directly the role of nesting in the CDW formation but they could not be detected so far in a CDW system. We address the reasons for the weak intensity of the folded bands, by comparing different foldings coexisting in CeTe3

    Atomic-scale surface demixing in a eutectic liquid BiSn alloy

    Full text link
    Resonant x-ray reflectivity of the surface of the liquid phase of the Bi43_{43}Sn57_{57} eutectic alloy reveals atomic-scale demixing extending over three near-surface atomic layers. Due to the absence of underlying atomic lattice which typically defines adsorption in crystalline alloys, studies of adsorption in liquid alloys provide unique insight on interatomic interactions at the surface. The observed composition modulation could be accounted for quantitatively by the Defay-Prigogine and Strohl-King multilayer extensions of the single-layer Gibbs model, revealing a near-surface domination of the attractive Bi-Sn interaction over the entropy.Comment: 4 pages (two-column), 3 figures, 1 table; Added a figure, updated references, discussion; accepted at Phys. Rev. Let

    Anomalous layering at the liquid Sn surface

    Full text link
    X-ray reflectivity measurements on the free surface of liquid Sn are presented. They exhibit the high-angle peak, indicative of surface-induced layering, also found for other pure liquid metals (Hg, Ga and In). However, a low-angle peak, not hitherto observed for any pure liquid metal, is also found, indicating the presence of a high-density surface layer. Fluorescence and resonant reflectivity measurements rule out the assignment of this layer to surface-segregation of impurities. The reflectivity is modelled well by a 10% contraction of the spacing between the first and second atomic surface layers, relative to that of subsequent layers. Possible reasons for this are discussed.Comment: 8 pages, 9 figures; to be submitted to Phys. Rev. B; updated references, expanded discussio
    • …
    corecore