14,424 research outputs found

    CO on Ru(001): Formation and dissolution of islands of CO at low coverages

    Get PDF
    The present paper deals with the benefits and difficulties of using ion scattering spectroscopy as a spectrometric technique

    Photoelectric polarimetry of the tail of comet Ikey-Seki (1975 VIII)

    Get PDF
    Post-perihelion measurements of Comet 1965 VIII made on four nights in October-November 1965 using a Fabry photometer atop 3,052 m Mt. Haleakala, Hawaii are described. Detailed results of observations at 5300A on October 29, 1965 are presented

    Carbon monoxide oxidation catalysis over Ir(110)

    Get PDF
    N/

    Future supernovae data and quintessence models

    Full text link
    The possibility to unambiguously determine the equation-of-state of the cosmic dark energy with existing and future supernovae data is investigated. We consider four evolution laws for this equation-of-state corresponding to four quintessential models, i.e. i) a cosmological constant, ii) a general barotropic fluid, iii) a perfect fluid with a linear equation-of-state and iv) a more physical model based on a pseudo-Nambu-Goldstone boson field. We explicitly show the degeneracies present not only within each model but also between the different models : they are caused by the multi-integral relation between the equation-of-state of dark energy and the luminosity distance. Present supernova observations are analysed using a standard χ2\chi^2 method and the minimal χ2\chi^2 values obtained for each model are compared. We confirm the difficulty to discriminate between these models using present SNeIa data only. By means of simulations, we then show that future SNAP observations will not remove all the degeneracies. For example, wrong estimations of Ωm\Omega_m with a good value of χmin2\chi^2_{min} could be found if the right cosmological model is not used to fit the data. We finally give some probabilities to obtain unambiguous results, free from degeneracies. In particular, the probability to confuse a cosmological constant with a true barotropic fluid with an equation-of-state different from -1 is shown to be 95% at a 2σ2 \sigma level.Comment: 12 pages. This improved version has been accepted for publication in M.N.R.A.

    An Index Theorem for Domain Walls in Supersymmetric Gauge Theories

    Get PDF
    The supersymmetric abelian Higgs model with N scalar fields admits multiple domain wall solutions. We perform a Callias-type index calculation to determine the number of zero modes of this soliton. We confirm that the most general domain wall has 2(N-1) zero modes, which can be interpreted as the positions and phases of (N-1) constituent domain walls. This implies the existence of moduli for a D-string interpolating between N D5-branes in IIB string theory.Comment: 9 pages, REVTeX4; v2: reference adde

    On the relation between mass of pion, fundamental physical constants and cosmological parameters

    Full text link
    In this article we reconsider the old mysterious relation, advocated by Dirac and Weinberg, between the mass of the pion, the fundamental physical constants, and the Hubble parameter. By introducing the cosmological density parameters, we show how the corresponding equation may be written in a form that is invariant with respect to the expansion of the Universe and without invoking a varying gravitational "constant", as was originaly proposed by Dirac. It is suggest that, through this relation, Nature gives a hint that virtual pions dominante the "content" of the quantum vacuum

    Using Perturbative Least Action to Recover Cosmological Initial Conditions

    Get PDF
    We introduce a new method for generating initial conditions consistent with highly nonlinear observations of density and velocity fields. Using a variant of the Least Action method, called Perturbative Least Action (PLA), we show that it is possible to generate several different sets of initial conditions, each of which will satisfy a set of highly nonlinear observational constraints at the present day. We then discuss a code written to test and apply this method and present the results of several simulations.Comment: 24 pages, 6 postscript figures. Accepted for publication in Astrophysical Journa

    Self-interacting Elko dark matter with an axis of locality

    Full text link
    This communication is a natural and nontrivial continuation of the 2005 work of Ahluwalia and Grumiller on Elko. Here we report that Elko breaks Lorentz symmetry in a rather subtle and unexpected way by containing a `hidden' preferred direction. Along this preferred direction, a quantum field based on Elko enjoys locality. In the form reported here, Elko offers a mass dimension one fermionic dark matter with a quartic self-interaction and a preferred axis of locality. The locality result crucially depends on a judicious choice of phases.Comment: 14 pages (RevTex

    Modulus Stabilization with Bulk Fields

    Get PDF
    We propose a mechanism for stabilizing the size of the extra dimension in the Randall-Sundrum scenario. The potential for the modulus field that sets the size of the fifth dimension is generated by a bulk scalar with quartic interactions localized on the two 3-branes. The minimum of this potential yields a compactification scale that solves the hierarchy problem without fine tuning of parameters.Comment: 8 pages, LaTeX; minor typo correcte

    Heavy Quark Potentials in Some Renormalization Group Revised AdS/QCD Models

    Full text link
    We construct some AdS/QCD models by the systematic procedure of GKN. These models reflect three rather different asymptotics the gauge theory beta functions approach at the infrared region, βλ2,λ3\beta\propto-\lambda^2, -\lambda^3 and βλ\beta\propto-\lambda, where λ\lambda is the 't Hooft coupling constant. We then calculate the heavy quark potentials in these models by holographic methods and find that they can more consistently fit the lattice data relative to the usual models which do not include the renormalization group improving effects. But only use the lattice QCD heavy quark potentials as constrains, we cannot distinguish which kind of infrared asymptotics is the better one.Comment: comparisons with lattice results, qualitative consideration of quantum corrections are added. (accepted by Phys. Rev. D
    corecore