8,289 research outputs found

    Science aspects of 1980 ballistic missions to comet Encke, using Mariner and Pioneer spacecraft

    Get PDF
    Science aspects of a 1980 spacecraft reconnaissance of Comet Encke are considered. The mission discussed is a ballistic flyby (more exactly, a fly-through) of P/Encke, using either a spin stabilized spacecraft, without despin of instruments, or a 3-axis stabilized spacecraft

    Scientific possibilities of a solar electric powered rendezvous with comet Encke

    Get PDF
    The minimum scientific spacecraft instrumentation is considered that is likely to result in as complete an understanding of the composition, structure, and activity of a cometary nucleus as is possible without landing on it. The payload will also give useful results on secondary goals of a better understanding of physical processes in the inner and outer coma. Studies of composition, by means of an actual landing on the surface, details of the internal structure of the nucleus, and sample return were considered beyond the scope of this mission

    Stability and electronic structure of the complex K2_2PtCl6_6 structure-type hydrides

    Full text link
    The stability and bonding of the ternary complex K2_2PtCl6_6 structure hydrides is discussed using first principles density functional calculations. The cohesion is dominated by ionic contributions, but ligand field effects are important, and are responsible for the 18-electron rule. Similarities to oxides are discussed in terms of the electronic structure. However, phonon calculations for Sr2_2RuH6_6 also show differences, particularly in the polarizability of the RuH6_6 octahedra. Nevertheless, the yet to be made compounds Pb2_2RuH6_6 and Be2_2FeH6_6 are possible ferroelectrics. The electronic structure and magnetic properties of the decomposition product, FeBe2_2 are reported. Implications of the results for H storage are discussed

    Preliminary Reconnaissance Water Quality Survey of the Buffalo National River

    Get PDF
    In accordance with Contract No. CX 700030105, dated 12 February 1973, the University of Arkansas , Water Resources Resear ch Center is submitting a Preliminary Reconnaissance Water Quality Survey of the Buffalo National River. The Water Resources Research Center of Arkansas has supplied the necessary personnel and facil ities to perform a preliminary reconnaissance survey of the Buffalo National River of Arkansas with special emphasis placed on the establishment of both permanent and temporary benchmarks for water quality sampling. Preliminary water quality samples have been collected to make those chemical, physical, and biological analyses as defined by Mr . Roland H. Wauer and other Park Service personnel on 3 May 1973

    4D, N = 1 Supersymmetry Genomics (I)

    Full text link
    Presented in this paper the nature of the supersymmetrical representation theory behind 4D, N = 1 theories, as described by component fields, is investigated using the tools of Adinkras and Garden Algebras. A survey of familiar matter multiplets using these techniques reveals they are described by two fundamental valise Adinkras that are given the names of the cis-Valise (c-V) and the trans-Valise (t-V). A conjecture is made that all off-shell 4D, N = 1 component descriptions of supermultiplets are associated with two integers - the numbers of c-V and t-V Adinkras that occur in the representation.Comment: 53 pages, 19 figures, Report-II of SSTPRS 2008 Added another chapter for clarificatio

    Semiclassical charged black holes with a quantized massive scalar field

    Get PDF
    Semiclassical perturbations to the Reissner-Nordstrom metric caused by the presence of a quantized massive scalar field with arbitrary curvature coupling are found to first order in \epsilon = \hbar/M^2. The DeWitt-Schwinger approximation is used to determine the vacuum stress-energy tensor of the massive scalar field. When the semiclassical perturbation are taken into account, we find extreme black holes will have a charge-to-mass ratio that exceeds unity, as measured at infinity. The effects of the perturbations on the black hole temperature (surface gravity) are studied in detail, with particular emphasis on near extreme ``bare'' states that might become precisely zero temperature ``dressed'' semiclassical black hole states. We find that for minimally or conformally coupled scalar fields there are no zero temperature solutions among the perturbed black holes.Comment: 19 pages; 1 figure; ReVTe

    Energy-Momentum Tensor of Field Fluctuations in Massive Chaotic Inflation

    Get PDF
    We study the renormalized energy-momentum tensor (EMT) of the inflaton fluctuations in rigid space-times during the slow-rollover regime for chaotic inflation with a mass term. We use dimensional regularization with adiabatic subtraction and introduce a novel analytic approximation for the inflaton fluctuations which is valid during the slow-rollover regime. Using this approximation we find a scale invariant spectrum for the inflaton fluctuations in a rigid space-time, and we confirm this result by numerical methods. The resulting renormalized EMT is covariantly conserved and agrees with the Allen-Folacci result in the de Sitter limit, when the expansion is exactly linearly exponential in time. We analytically show that the EMT tensor of the inflaton fluctuations grows initially in time, but saturates to the value H^2 H(0)^2, where H is the Hubble parameter and H(0) is its value when inflation has started. This result also implies that the quantum production of light scalar fields (with mass smaller or equal to the inflaton mass) in this model of chaotic inflation depends on the duration of inflation and is larger than the usual result extrapolated from the de Sitter result.Comment: revtex style, 24 pages, 6 eps figures Numerical checks added and moduli section improve

    Evolution of magnetized, differentially rotating neutron stars: Simulations in full general relativity

    Get PDF
    We study the effects of magnetic fields on the evolution of differentially rotating neutron stars, which can form in stellar core collapse or binary neutron star coalescence. Magnetic braking and the magnetorotational instability (MRI) both redistribute angular momentum; the outcome of the evolution depends on the star's mass and spin. Simulations are carried out in axisymmetry using our recently developed codes which integrate the coupled Einstein-Maxwell-MHD equations. For initial data, we consider three categories of differentially rotating, equilibrium configurations, which we label normal, hypermassive and ultraspinning. Hypermassive stars have rest masses exceeding the mass limit for uniform rotation. Ultraspinning stars are not hypermassive, but have angular momentum exceeding the maximum for uniform rotation at the same rest mass. We show that a normal star will evolve to a uniformly rotating equilibrium configuration. An ultraspinning star evolves to an equilibrium state consisting of a nearly uniformly rotating central core, surrounded by a differentially rotating torus with constant angular velocity along magnetic field lines, so that differential rotation ceases to wind the magnetic field. In addition, the final state is stable against the MRI, although it has differential rotation. For a hypermassive neutron star, the MHD-driven angular momentum transport leads to catastrophic collapse of the core. The resulting rotating black hole is surrounded by a hot, massive, magnetized torus undergoing quasistationary accretion, and a magnetic field collimated along the spin axis--a promising candidate for the central engine of a short gamma-ray burst. (Abridged)Comment: 27 pages, 30 figure

    Synthesis of the elements in stars: forty years of progress

    Get PDF
    Forty years ago Burbidge, Burbidge, Fowler, and Hoyle combined what we would now call fragmentary evidence from nuclear physics, stellar evolution and the abundances of elements and isotopes in the solar system as well as a few stars into a synthesis of remarkable ingenuity. Their review provided a foundation for forty years of research in all of the aspects of low energy nuclear experiments and theory, stellar modeling over a wide range of mass and composition, and abundance studies of many hundreds of stars, many of which have shown distinct evidence of the processes suggested by B2FH. In this review we summarize progress in each of these fields with emphasis on the most recent developments
    corecore