152 research outputs found
Electro-explosive alloying of VT6 alloy surface by boron carbide powder with the subsequent electron-beam treatment
The formation of electro-explosive alloying zone with the thickness up to 50 Β΅m has been revealed. It has been shown that it has a gradient structure, characterized by the decrease of carbon and boron concentration with the increase of the distance up to the treatment surface. The subsequent electron-beam treatment of alloying zone leads to flattening of alloying surface relief and is accompanied by the formation of a multilevel structure at the depth up to 30 Β΅m, characterized by the interchange of some layers with a different level of alloying, having structure of a submicro- and nanoscale level
Surface structure of commercially pure VT1-0 titanium irradiated by an intense pulsed electron beam
It is shown that pulsed electron beam irradiation of commercially pure titanium at a beam energy density of 10 J/cm{2}, pulse duration of 150 [mu]s, number of pulses of N=5 pulses, and pulse repetition frequency of 0.3 Hz with attendant polymorphic [alpha]->[beta]->[ alpha] transformations allows a more than five-fold decrease in the grain and subgrain sizes of the material structure
Modification of the sample's surface of hypereutectic silumin by pulsed electron beam
The article presents the results of the analysis of the elemental and phase composition, defect substructures. It demonstrates strength and tribological characteristics of the aluminium-silicon alloy of the hypereutectic composition in the cast state and after irradiation with a high-intensity pulsed electron beam of a submillisecond exposure duration (a Solo installation, Institute of High Current Electrons of the Siberian Branch of the Russian Academy of Sciences). The research has been conducted using optical and scanning electron microscopy, and the X-ray phase analysis. Mechanical properties have been characterized by microhardness, tribological properties - by wear resistance and the friction coefficient value. Irradiation of silumin with the high-intensity pulsed electron beam has led to the modification of the surface layer up to 1000 microns thick. The surface layer with the thickness of up to 100 microns is characterized by melting of all phases present in the alloy; subsequent highspeed crystallization leads to the formation of a submicro- and nanocrystalline structure in this layer. The hardness of the modified layer decreases with the increasing distance from the surface exposure. The hardness of the surface layer is more than twice the hardness of cast silumin. Durability of silumin treated with a high intensity electron beam is β 1, 2 times as much as the wear resistance of the cast material
Structure and mechanical characteristics of the hypereutectic silumin subjected to pulsed electron beam treatment
Silumin, aluminum with silicon alloy, is a promising material used for the manufacture of medium-loaded machine parts and mechanisms. High brittleness is one of the main drawbacks of hypereutectic silumin. Modification of a hypereutectic silumin (18-20 wt.% Si) was carried out by irradiating the samples with an intense pulsed electron beam. It was established that irradiation of cast hypoeutectic silumin by an electron beam leads to a significant reduction in the number of micropores, forming a high-speed cellular crystallization structure with a cell size of (0.4-0.6) [mu]m. An irradiation mode allowing to increase the silumin surface layer hardness by more than 4 times, wear resistance - by 1.2 times, to increase ductility by 1.2 times in relation to the initial material was detected (35 J/cm{2}; 200 [mu]s, 20 imp. 0.3 s{-1})
The accumulation of femtosecond laser radiation energy in crystals of lithium fluoride
We present the results of studies of energy accumulation during the non-destructive interaction of extremely intense near infrared laser radiation with model wide band gap dielectric crystals of lithium fluoride, when the intensity of pulses is sufficient for effective highly nonlinear absorption of light and for the excitation of the electron subsystem of matter and the energy of pulses is still not sufficient for significant heating, evaporation, laser breakdown or other destruction to occur. We studied the emission of energy in the form of light sum of thermally stimulated luminescence accumulated under conditions of self-focusing and multiple filamentation of femtosecond laser radiation. It was established that it's the F2 and F[3]{+} color centers and supplementary to them centers of interstitial type which accumulate energy under the action of a single femtosecond laser pulses. When irradiated by series of pulses the F3, F[3]{-} and F[4] centers additionally appear. F2 centers are the main centers of emission in the process of thermally stimulated luminescence of accumulated energy. The interstitial fluoride ions (I-centers) are the kinetic particles. They split off from the X[3]{-} centers in the result of thermal decomposition of latter on the I-centers and molecules X[2]{0}. I-centers recombine with F[3]{+} centers and form F[2] centers in excited state. The latter produce the characteristic emission spectrum emitted in the form of thermally stimulated luminescence
Nanostructuring of a Surface Layer as a Way to Improve the Mechanical Properties of Hypoeutectic Silumin
The irradiation of hypoeutectic silumin 383.1 with an intense pulsed electron beam in the melting mode and rapid crystallization of the surface layer has been performed. A multiphase submicron nanostructured surface layer with a thickness of up to 70 nm has been formed. Mechanical tests of the irradiated silumin samples in tensile experiments have been carried out. A significant increase in strength and plastic properties of silumin irradiated with an electron beam has been established. Features and patterns in the distribution of displacement fields in the deformation process in surface layers of the samples in realtime have been identified by digital image correlation method using the optical measuring system VIC-3D
Nanostructuring of a Surface Layer as a Way to Improve the Mechanical Properties of Hypoeutectic Silumin
The irradiation of hypoeutectic silumin 383.1 with an intense pulsed electron beam in the melting mode and rapid crystallization of the surface layer has been performed. A multiphase submicron nanostructured surface layer with a thickness of up to 70 nm has been formed. Mechanical tests of the irradiated silumin samples in tensile experiments have been carried out. A significant increase in strength and plastic properties of silumin irradiated with an electron beam has been established. Features and patterns in the distribution of displacement fields in the deformation process in surface layers of the samples in realtime have been identified by digital image correlation method using the optical measuring system VIC-3D
Fabrication of endothelial cell-laden carrageenan microfibers for microvascularized bone tissue engineering applications
ecent achievements in the area of tissue engineering (TE) have enabled the development of three-dimensional (3D) cell-laden hydrogels as in vitro platforms that closely mimic the 3D scenario found in native tissues. These platforms are extensively used to evaluate cellular behavior, cell-cell interactions, and tissue-like formation in highly defined settings. In this study, we propose a scalable and flexible 3D system based on microsized hydrogel fibers that might be used as building blocks for the establishment of 3D hydrogel constructs for vascularized bone TE applications. For this purpose, chitosan (CHT) coated ΞΊ-carrageenan (ΞΊ-CA) microfibers were developed using a two-step procedure involving ionotropic gelation (for the fiber formation) of ΞΊ-CA and its polyelectrolyte complexation with CHT (for the enhancement of fiber stability). The performance of the obtained fibers was assessed regarding their swelling and stability profiles, as well as their ability to carry and, subsequently, promote the outward release of microvascular-like endothelial cells (ECs), without compromising their viability and phenotype. Finally, the possibility of assembling and integrating these cell-laden fibers within a 3D hydrogel matrix containing osteoblast-like cells was evaluated. Overall, the obtained results demonstrate the suitability of the microsized ΞΊ-CA fibers to carry and deliver phenotypically apt microvascular-like ECs. Furthermore, it is shown that it is possible to assemble these cell-laden microsized fibers into 3D heterotypic hydrogels constructs. This in vitro 3D platform provides a versatile approach to investigate the interactions between multiple cell types in controlled settings, which may open up novel 3D in vitro culture techniques to better mimic the complexity of tissues.Authors thank the Portuguese Foundation for Science and Technology (FCT) for the personal grants SFRH/BD/42968/2008 through the MIT-Portugal Program (SMM) and SFRH/BD/64070/2009 (EGP). The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no REGPOT-CT2012-316331-POLARIS and MIT/ECE/0047/2009 project
Study of the stochastic clustering on the refractory material surface under the effect of plasma load in the PLM device
Tungsten plates were tested in stationary helium discharges in the PLM device. The duration of discharges in the PLM reached 200 minutes. A distinctive feature of this device is the stationary plasma confinement, which is advantageous for testing fusion materials, including materials of the divertor and first wall of a fusion reactor. During plasma irradiation in the PLM, the thermal load on the surface of the tested plates was more than 1 MW/m(2). The temperature of the tested plates amounted to 1000 degrees C and more. Stochastic nanostructures with dimensions of the structural elements of less than 50 nm, including fuzz-type structures, were observed on the processed surfaces of the samples
- β¦