1,466 research outputs found

    On the Incompatibility of Standard Quantum Mechanics and the de Broglie-Bohm Theory

    Full text link
    It is shown that the de Broglie-Bohm quantum theory of multi-particle systems is incompatible with the standard quantum theory of such systems unless the former is ergodic. A realistic experiment is suggested to distinguish between the two theories.Comment: A few technical changes incorporated in section V without any change in conclusion

    Hypersurface Bohm-Dirac models

    Full text link
    We define a class of Lorentz invariant Bohmian quantum models for N entangled but noninteracting Dirac particles. Lorentz invariance is achieved for these models through the incorporation of an additional dynamical space-time structure provided by a foliation of space-time. These models can be regarded as the extension of Bohm's model for N Dirac particles, corresponding to the foliation into the equal-time hyperplanes for a distinguished Lorentz frame, to more general foliations. As with Bohm's model, there exists for these models an equivariant measure on the leaves of the foliation. This makes possible a simple statistical analysis of position correlations analogous to the equilibrium analysis for (the nonrelativistic) Bohmian mechanics.Comment: 17 pages, 3 figures, RevTex. Completely revised versio

    Reply to Comments of Steuernagel on the Afshar's Experiment

    Full text link
    We respond to criticism of our paper "Paradox in Wave-Paricle Duality for Non-Perturbative Measurements". We disagree with Steuernagel's derivation of the visibility of the Afshar experiment. To calculate the fringe visibility, Steuernagel utilizes two different experimental situations, i.e. the wire grid in the pattern minima and in the pattern maxima. In our assessment, this proceduere cannot lead to the correct result for the complementarity properties of wave-particle in one particular experimental set-up

    A Mott-like State of Molecules

    Full text link
    We prepare a quantum state where each site of an optical lattice is occupied by exactly one molecule. This is the same quantum state as in a Mott insulator of molecules in the limit of negligible tunneling. Unlike previous Mott insulators, our system consists of molecules which can collide inelastically. In the absence of the optical lattice these collisions would lead to fast loss of the molecules from the sample. To prepare the state, we start from a Mott insulator of atomic 87Rb with a central region, where each lattice site is occupied by exactly two atoms. We then associate molecules using a Feshbach resonance. Remaining atoms can be removed using blast light. Our method does not rely on the molecule-molecule interaction properties and is therefore applicable to many systems.Comment: Proceedings of the 20th International Conference on Atomic Physics (ICAP 2006), edited by C. Roos, H. Haffner, and R. Blatt, AIP Conference Proceedings, Melville, 2006, Vol. 869, pp. 278-28

    Multi-Player Diffusion Games on Graph Classes

    Full text link
    We study competitive diffusion games on graphs introduced by Alon et al. [1] to model the spread of influence in social networks. Extending results of Roshanbin [8] for two players, we investigate the existence of pure Nash equilibria for at least three players on different classes of graphs including paths, cycles, grid graphs and hypercubes; as a main contribution, we answer an open question proving that there is no Nash equilibrium for three players on (m x n) grids with min(m, n) >= 5. Further, extending results of Etesami and Basar [3] for two players, we prove the existence of pure Nash equilibria for four players on every d-dimensional hypercube.Comment: Extended version of the TAMC 2015 conference version now discussing hypercube results (added details for the proof of Proposition 1

    On the zig-zag pilot-wave approach for fermions

    Full text link
    We consider a pilot-wave approach for the Dirac theory that was recently proposed by Colin and Wiseman. In this approach, the particles perform a zig-zag motion, due to stochastic jumps of their velocity. We respectively discuss the one-particle theory, the many-particle theory and possible extensions to quantum field theory. We also discuss the non-relativistic limit of the one-particle theory. For a single particle, the motion is always luminal, a feature that persists in the non-relativistic limit. For more than one particle the motion is in general subluminal.Comment: 23 pages, no figures, LaTe

    Thermal limitation of far-field matter-wave interference

    Full text link
    We assess the effect of the heat radiation emitted by mesoscopic particles on their ability to show interference in a double slit arrangement. The analysis is based on a stationary, phase-space based description of matter wave interference in the presence of momentum-exchange mediated decoherence.Comment: 8 pages, 2 figures; published versio

    Dual Behavior of Antiferromagnetic Uncompensated Spins in NiFe/IrMn Exchange Biased Bilayers

    Full text link
    We present a comprehensive study of the exchange bias effect in a model system. Through numerical analysis of the exchange bias and coercive fields as a function of the antiferromagnetic layer thickness we deduce the absolute value of the averaged anisotropy constant of the antiferromagnet. We show that the anisotropy of IrMn exhibits a finite size effect as a function of thickness. The interfacial spin disorder involved in the data analysis is further supported by the observation of the dual behavior of the interfacial uncompensated spins. Utilizing soft x-ray resonant magnetic reflectometry we have observed that the antiferromagnetic uncompensated spins are dominantly frozen with nearly no rotating spins due to the chemical intermixing, which correlates to the inferred mechanism for the exchange bias.Comment: 4 pages, 3 figure

    On Epstein's trajectory model of non-relativistic quantum mechanics

    Full text link
    In 1952 Bohm presented a theory about non-relativistic point-particles moving along deterministic trajectories and showed how it reproduces the predictions of standard quantum theory. This theory was actually presented before by de Broglie in 1926, but Bohm's particular formulation of the theory inspired Epstein to come up with a different trajectory model. The aim of this paper is to examine the empirical predictions of this model. It is found that the trajectories in this model are in general very different from those in the de Broglie-Bohm theory. In certain cases they even seem bizarre and rather unphysical. Nevertheless, it is argued that the model seems to reproduce the predictions of standard quantum theory (just as the de Broglie-Bohm theory).Comment: 12 pages, no figures, LaTex; v2 minor improvement

    Typicality vs. probability in trajectory-based formulations of quantum mechanics

    Full text link
    Bohmian mechanics represents the universe as a set of paths with a probability measure defined on it. The way in which a mathematical model of this kind can explain the observed phenomena of the universe is examined in general. It is shown that the explanation does not make use of the full probability measure, but rather of a suitable set function deriving from it, which defines relative typicality between single-time cylinder sets. Such a set function can also be derived directly from the standard quantum formalism, without the need of an underlying probability measure. The key concept for this derivation is the {\it quantum typicality rule}, which can be considered as a generalization of the Born rule. The result is a new formulation of quantum mechanics, in which particles follow definite trajectories, but which is only based on the standard formalism of quantum mechanics.Comment: 24 pages, no figures. To appear in Foundation of Physic
    • …
    corecore