1,466 research outputs found
On the Incompatibility of Standard Quantum Mechanics and the de Broglie-Bohm Theory
It is shown that the de Broglie-Bohm quantum theory of multi-particle systems
is incompatible with the standard quantum theory of such systems unless the
former is ergodic. A realistic experiment is suggested to distinguish between
the two theories.Comment: A few technical changes incorporated in section V without any change
in conclusion
Hypersurface Bohm-Dirac models
We define a class of Lorentz invariant Bohmian quantum models for N entangled
but noninteracting Dirac particles. Lorentz invariance is achieved for these
models through the incorporation of an additional dynamical space-time
structure provided by a foliation of space-time. These models can be regarded
as the extension of Bohm's model for N Dirac particles, corresponding to the
foliation into the equal-time hyperplanes for a distinguished Lorentz frame, to
more general foliations. As with Bohm's model, there exists for these models an
equivariant measure on the leaves of the foliation. This makes possible a
simple statistical analysis of position correlations analogous to the
equilibrium analysis for (the nonrelativistic) Bohmian mechanics.Comment: 17 pages, 3 figures, RevTex. Completely revised versio
Reply to Comments of Steuernagel on the Afshar's Experiment
We respond to criticism of our paper "Paradox in Wave-Paricle Duality for
Non-Perturbative Measurements". We disagree with Steuernagel's derivation of
the visibility of the Afshar experiment. To calculate the fringe visibility,
Steuernagel utilizes two different experimental situations, i.e. the wire grid
in the pattern minima and in the pattern maxima. In our assessment, this
proceduere cannot lead to the correct result for the complementarity properties
of wave-particle in one particular experimental set-up
A Mott-like State of Molecules
We prepare a quantum state where each site of an optical lattice is occupied
by exactly one molecule. This is the same quantum state as in a Mott insulator
of molecules in the limit of negligible tunneling. Unlike previous Mott
insulators, our system consists of molecules which can collide inelastically.
In the absence of the optical lattice these collisions would lead to fast loss
of the molecules from the sample. To prepare the state, we start from a Mott
insulator of atomic 87Rb with a central region, where each lattice site is
occupied by exactly two atoms. We then associate molecules using a Feshbach
resonance. Remaining atoms can be removed using blast light. Our method does
not rely on the molecule-molecule interaction properties and is therefore
applicable to many systems.Comment: Proceedings of the 20th International Conference on Atomic Physics
(ICAP 2006), edited by C. Roos, H. Haffner, and R. Blatt, AIP Conference
Proceedings, Melville, 2006, Vol. 869, pp. 278-28
Multi-Player Diffusion Games on Graph Classes
We study competitive diffusion games on graphs introduced by Alon et al. [1]
to model the spread of influence in social networks. Extending results of
Roshanbin [8] for two players, we investigate the existence of pure Nash
equilibria for at least three players on different classes of graphs including
paths, cycles, grid graphs and hypercubes; as a main contribution, we answer an
open question proving that there is no Nash equilibrium for three players on (m
x n) grids with min(m, n) >= 5. Further, extending results of Etesami and Basar
[3] for two players, we prove the existence of pure Nash equilibria for four
players on every d-dimensional hypercube.Comment: Extended version of the TAMC 2015 conference version now discussing
hypercube results (added details for the proof of Proposition 1
On the zig-zag pilot-wave approach for fermions
We consider a pilot-wave approach for the Dirac theory that was recently
proposed by Colin and Wiseman. In this approach, the particles perform a
zig-zag motion, due to stochastic jumps of their velocity. We respectively
discuss the one-particle theory, the many-particle theory and possible
extensions to quantum field theory. We also discuss the non-relativistic limit
of the one-particle theory. For a single particle, the motion is always
luminal, a feature that persists in the non-relativistic limit. For more than
one particle the motion is in general subluminal.Comment: 23 pages, no figures, LaTe
Thermal limitation of far-field matter-wave interference
We assess the effect of the heat radiation emitted by mesoscopic particles on
their ability to show interference in a double slit arrangement. The analysis
is based on a stationary, phase-space based description of matter wave
interference in the presence of momentum-exchange mediated decoherence.Comment: 8 pages, 2 figures; published versio
Dual Behavior of Antiferromagnetic Uncompensated Spins in NiFe/IrMn Exchange Biased Bilayers
We present a comprehensive study of the exchange bias effect in a model
system. Through numerical analysis of the exchange bias and coercive fields as
a function of the antiferromagnetic layer thickness we deduce the absolute
value of the averaged anisotropy constant of the antiferromagnet. We show that
the anisotropy of IrMn exhibits a finite size effect as a function of
thickness. The interfacial spin disorder involved in the data analysis is
further supported by the observation of the dual behavior of the interfacial
uncompensated spins. Utilizing soft x-ray resonant magnetic reflectometry we
have observed that the antiferromagnetic uncompensated spins are dominantly
frozen with nearly no rotating spins due to the chemical intermixing, which
correlates to the inferred mechanism for the exchange bias.Comment: 4 pages, 3 figure
On Epstein's trajectory model of non-relativistic quantum mechanics
In 1952 Bohm presented a theory about non-relativistic point-particles moving
along deterministic trajectories and showed how it reproduces the predictions
of standard quantum theory. This theory was actually presented before by de
Broglie in 1926, but Bohm's particular formulation of the theory inspired
Epstein to come up with a different trajectory model. The aim of this paper is
to examine the empirical predictions of this model. It is found that the
trajectories in this model are in general very different from those in the de
Broglie-Bohm theory. In certain cases they even seem bizarre and rather
unphysical. Nevertheless, it is argued that the model seems to reproduce the
predictions of standard quantum theory (just as the de Broglie-Bohm theory).Comment: 12 pages, no figures, LaTex; v2 minor improvement
Typicality vs. probability in trajectory-based formulations of quantum mechanics
Bohmian mechanics represents the universe as a set of paths with a
probability measure defined on it. The way in which a mathematical model of
this kind can explain the observed phenomena of the universe is examined in
general. It is shown that the explanation does not make use of the full
probability measure, but rather of a suitable set function deriving from it,
which defines relative typicality between single-time cylinder sets. Such a set
function can also be derived directly from the standard quantum formalism,
without the need of an underlying probability measure. The key concept for this
derivation is the {\it quantum typicality rule}, which can be considered as a
generalization of the Born rule. The result is a new formulation of quantum
mechanics, in which particles follow definite trajectories, but which is only
based on the standard formalism of quantum mechanics.Comment: 24 pages, no figures. To appear in Foundation of Physic
- …